MARJOLAINE PUEL
CURRICULUM VITAE
. depuis 2020. Professeur à Cergy Paris université.
. 2012-2020. Professeur à l'Université Nice Sophia, composante Polytech'Nice puis UFR sciences.
. 2004-2012. Maître de conférence à l'Université Paul Sabatier, Toulouse, composante IUT A.
. 2011. HDR, Université Paul Sabatier, Toulouse.
. 2001. Thèse, Université Paris VI.
THEMES DE RECHERCHE
. EDP pour les fluides et les plasmas.
. Limites asymptotiques (quasi-neutre, semi-classique, non relativiste, limites de diffusion).
. Homogénéisation des équations de transport.
. Transport optimal et applications au EDP.
CONTACT
Adresse : Laboratoire AGM,
CYU,
2 av. Adolphe Chauvin (Bat. E, 5ème étage)
95302 CERGY-PONTOISE CEDEX.
e-mail : mpuel@cyu.fr
PUBLICATIONS
Y. Brenier, M. Puel. Optimal multiphase transportation with prescribed momentum. Volume dedicated to J.L. Lions. ESAIM Control Optim. Calc. Var. 8 (2002), 287-343. |
|
M. Puel. Convergence of the Schrödinger-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 27 (2002), no. 11-12, 2311-2331. |
|
M. Puel. Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a strong magnetic field. Math. Model. Numer. Anal. 36 (2002), no. 6, 1071-1090. |
|
Y. Brenier, N. Mauser, M. Puel. Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system. Commun. Math. Sci. 1 (2003), no. 3, 437-447. |
|
M. Puel, L. Saint-Raymond. Quasineutral limit for the relativistic Valsov-Maxwell system. Asymptot. Anal. 40 (2004), no. 3-4, 303-352. |
|
Y. Brenier, R. Natalini, M. Puel. On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Amer. Math. Soc. Vol 132 (2004), no. 4, 1021-1028. |
|
J-F. Clouët, F. Golse, M. Puel, R. Sentis. On the slowing down of charged particles in a binary stochastic mixture. Kinet. Relat. Models 1 (2008), no. 3, 387-404. |
|
R.J. McCann, M. Puel. Construction a relativistic flow by transport time steps. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 6, 2539-2580. |
|
N. Ben Abdallah, A. Mellet, M. Puel. Anomalous diffusion limit for kinetic equations with degenerate collision frequency. Math. Models Methods Appl. Sci. 21 (2011), no. 11, 2249-2262. |
|
N. Ben Abdallah, A. Mellet, M. Puel. Fractional diffusion limit for collisional kinetic equations : a Hilbert expansion approach. Kinet. Relat. Models 4 (2011), no. 4, 873-900. |
|
G. Allaire, Y. Capdeboscq, M. Puel. Homogeneization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete Contin. Dyn. Syst. Ser. B 17 (2012), no. 1, 1-31. |
|
N. Ben Abdallah, M. Puel, M. Vogelius. Diffusion and homogenization limits with separate scales. Multiscale Model. Simul. 10 (2012), no. 4, 1148-1179. |
|
G. Bal, M. Puel. A corrector result for diffusion and homogenization limits for the Boltzmann equation. SIAM J. Math. Analysis 44 (2012), no. 6, 3848–3873. |
|
J. Bertrand, M. Puel. The optimal mass transport problem for relativistic costs. Calc. Var. Partial Differential Equations 46 (2013), no. 1-2, 353-374. |
|
E. Nasreddine, M.Puel. Diffusion limit of Fokker-Planck equation with heavy tail equilibria. ESAIM Math. Model. Numer. Anal. 49 (2015), no. 1, 1-17. |
|
M. Puel, A. Vasseur. Global weak solutions to the inviscid 3D Quasi-geostrophic equation. Comm. Math. Phys. 339 (2015), no. 3, 1063-1082. |
|
J. Bertrand, A. Pratelli, M. Puel. Existence of Kantorovitch potentials for relativistic costs. J. Math. Pures Appl. (9) 110 (2018), 93-122. |
|
P. Cattiaux, E. Nasreddine, M Puel. Diffusion limit of Fokker Planck equation with heavy tails equilibria : a probabilistic approach including anomalous rate. Kinet. Relat. Models. 12(4): 727-748, 2019. |
|
G. Lebeau, M. Puel. Diffusion approximation for Fokker Planck with heavy tail equilibria : a spectral method in dimension 1. Comm. Math. Phys. 366 (2019), no. 2, 709-735. |
|
L. Cesbron, A. Mellet, M. Puel. Fractional diffusion limit for a kinetic equation in the upper-half space with diffusive boundary conditions. Arch. Ration. Mech. Anal. 235 (2020), no. 2, 1245-1288. |
|
L. Cesbron, A. Mellet, M. Puel. Fractional Diffusion limit of a kinetic equation with Diffusive boundary conditions in a bounded interval. . |
|
Y. Brenier, N. Mauser, M. Puel. Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique. C. R. Math. Acad. Sci. Paris 334 (2002), no. 3, 239–244. |
|
M. Puel. Numerical reconstruction of multiphase flows with prescribed total momentum. ESAIM, Proceedings CEMRACS 1999 (Orsay) vol. 10,151-159. |
|
Etudes variationelle et asymptotique de problèmes de la mécanique des fluides et des plasmas. Université Paris VI. |
|
Contributions à l’étude des équations de la physique des plasmas. Université Paul Sabatier, Toulouse. |