MARJOLAINE PUEL



CURRICULUM VITAE


. depuis 2020.  Professeur à Cergy Paris université.
. 2012-2020.  Professeur à l'Université Nice Sophia, composante Polytech'Nice puis UFR sciences.
. 2004-2012. Maître de conférence à l'Université Paul Sabatier, Toulouse, composante IUT A.
. 2011. HDR, Université Paul Sabatier, Toulouse.
. 2001. Thèse, Université Paris VI.



THEMES DE RECHERCHE


. EDP pour les fluides et les plasmas.
. Limites asymptotiques (quasi-neutre, semi-classique, non relativiste, limites de diffusion).
. Homogénéisation des équations de transport.
. Transport optimal et applications au EDP.



CONTACT


Adresse : Laboratoire AGM,
CYU,
2 av. Adolphe Chauvin (Bat. E, 5ème étage)
95302 CERGY-PONTOISE CEDEX.
e-mail : mpuel@cyu.fr





PUBLICATIONS

  [1]

Y. Brenier, M. Puel. Optimal multiphase transportation with prescribed momentum.  

Volume dedicated to J.L. Lions. ESAIM Control Optim. Calc. Var. 8 (2002), 287-343.

  [2]

M. Puel. Convergence of the Schrödinger-Poisson system to the incompressible Euler equations.  

Comm. Partial Differential Equations 27 (2002), no. 11-12, 2311-2331.

  [3]

M. Puel. Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a strong magnetic field.  

Math. Model. Numer. Anal. 36 (2002), no. 6, 1071-1090.

[4]

Y. Brenier, N. Mauser, M. Puel. Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system.  

Commun. Math. Sci. 1 (2003), no. 3, 437-447.

[5]

M. Puel, L. Saint-Raymond. Quasineutral limit for the relativistic Valsov-Maxwell system.  

Asymptot. Anal. 40 (2004), no. 3-4, 303-352.

[6]

Y. Brenier, R. Natalini, M. Puel. On a relaxation approximation of the incompressible Navier-Stokes equations.  

Proc. Amer. Math. Soc. Vol 132 (2004), no. 4, 1021-1028.

[7]

J-F. Clouët, F. Golse, M. Puel, R. Sentis. On the slowing down of charged particles in a binary stochastic mixture.  

Kinet. Relat. Models 1 (2008), no. 3, 387-404.

[8]

R.J. McCann, M. Puel. Construction a relativistic flow by transport time steps.  

Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 6, 2539-2580.

[9]

N. Ben Abdallah, A. Mellet, M. Puel. Anomalous diffusion limit for kinetic equations with degenerate collision frequency.  

Math. Models Methods Appl. Sci. 21 (2011), no. 11, 2249-2262.

[10]

N. Ben Abdallah, A. Mellet, M. Puel. Fractional diffusion limit for collisional kinetic equations : a Hilbert expansion approach.  

Kinet. Relat. Models 4 (2011), no. 4, 873-900.

[11]

G. Allaire, Y. Capdeboscq, M. Puel. Homogeneization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions.  

Discrete Contin. Dyn. Syst. Ser. B 17 (2012), no. 1, 1-31.

[12]

N. Ben Abdallah, M. Puel, M. Vogelius. Diffusion and homogenization limits with separate scales.  

Multiscale Model. Simul. 10 (2012), no. 4, 1148-1179.

[13]

G. Bal, M. Puel. A corrector result for diffusion and homogenization limits for the Boltzmann equation.  

SIAM J. Math. Analysis 44 (2012), no. 6, 3848–3873.

[14]

J. Bertrand, M. Puel. The optimal mass transport problem for relativistic costs.  

Calc. Var. Partial Differential Equations 46 (2013), no. 1-2, 353-374.

[15]

E. Nasreddine, M.Puel. Diffusion limit of Fokker-Planck equation with heavy tail equilibria.  

ESAIM Math. Model. Numer. Anal. 49 (2015), no. 1, 1-17.

[16]

M. Puel, A. Vasseur. Global weak solutions to the inviscid 3D Quasi-geostrophic equation.  

Comm. Math. Phys. 339 (2015), no. 3, 1063-1082.

[17]

J. Bertrand, A. Pratelli, M. Puel. Existence of Kantorovitch potentials for relativistic costs.  

J. Math. Pures Appl. (9) 110 (2018), 93-122.

[18]

P. Cattiaux, E. Nasreddine, M Puel. Diffusion limit of Fokker Planck equation with heavy tails equilibria : a probabilistic approach including anomalous rate.  

Kinet. Relat. Models. 12(4): 727-748, 2019.

[19]

G. Lebeau, M. Puel. Diffusion approximation for Fokker Planck with heavy tail equilibria : a spectral method in dimension 1.  

Comm. Math. Phys. 366 (2019), no. 2, 709-735.

[20]

L. Cesbron, A. Mellet, M. Puel. Fractional diffusion limit for a kinetic equation in the upper-half space with diffusive boundary conditions.  

Arch. Ration. Mech. Anal. 235 (2020), no. 2, 1245-1288.

[21]

L. Cesbron, A. Mellet, M. Puel. Fractional Diffusion limit of a kinetic equation with Diffusive boundary conditions in a bounded interval.  

.

[Note]

Y. Brenier, N. Mauser, M. Puel. Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique.  

C. R. Math. Acad. Sci. Paris 334 (2002), no. 3, 239–244.

 [Acte]

M. Puel. Numerical reconstruction of multiphase flows with prescribed total momentum.  

ESAIM, Proceedings CEMRACS 1999 (Orsay) vol. 10,151-159.

 [Thèse]

Etudes variationelle et asymptotique de problèmes de la mécanique des fluides et des plasmas.  

Université Paris VI.

 [HDR]

Contributions à l’étude des équations de la physique des plasmas.  

Université Paul Sabatier, Toulouse.