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Abstract

This paper is devoted to hydrodynamic limits for collisional linear
kinetic equations. It is a classical result that under certain conditions
on the collision operator, the long time/small mean free path asymptotic
behavior of the density of particles can be described by diffusion type
equations. We are interested in situations in which the degeneracy of the
collision frequency for small velocities causes this limit to break down.
We show that the appropriate asymptotic analysis leads to an anomalous
diffusion regime.

1 Introduction

In this paper we investigate diffusion regimes for the following kinetic equation:{
εα∂tf

ε + εv · ∇xfε = L(fε) for all (x, v) ∈ RN × RN and t > 0

fε(x, v, 0) = f0(x, v) for all (x, v) ∈ RN × RN
(1)

when the operator L is a linear collision operator of the form:

L(f) :=
∫

RN
b(v, v′)[f(v′)M(v)− f(v)M(v′)] dv′. (2)

The thermodynamical equilibrium function M(v) is a given function and it is
normalized so that ∫

RN
M(v) dv = 1.
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Typically, one can take M to be a Maxwellian distribution function M(v) =
1

(2πT )N/2
e−

v2
2T , (for some temperature T > 0) though other distribution functions

could be considered without difficulties. The collision kernel b(v, v′) in (2) is
usually assumed to satisfy

b(v, v′) = b(v′, v) ≥ 0 (3)

and in this paper, we are going to limit ourself to a very simple case where we
have

b(v, v′) = a(v)a(v′) (4)

for some function a(v) ≥ 0. Of course, our result also applies to more general
collision kernels, with minor modifications.

When (4) holds, the operator L reads:

L(f) = a(v)
∫
a(v′)f(v′) dv′M(v)− ν(v)f(v)

where
ν(v) :=

∫
b(v, v′)M(v′) dv′ = a(v)

∫
a(v′)M(v′) dv′

denotes the collision frequency. We can also write L as follows (and we will use
mainly this notation from now on):

L(f) = ν(v)[ρνM(v)− f(v)] with ρν :=

∫
ν(v)f(v) dv∫
ν(v)M(v) dv

(5)

(note that ρν is not the usual density of f , except when f(x, v, t) = ρ(x, t)M(v)).

The parameter ε in (1) is the Knudsen number. It is defined as the ratio of
the mean free path of the particles to the typical macroscopic length. We are
interested in the small mean free path (ε� 1) long time (t ∼ ε−α) regime, which
leads to the scaling in (1). The derivation of hydrodynamic limits for kinetic
equations such as (1) was first investigated by E. Wigner [11], A. Bensoussan,
J.L. Lions and G. Papanicolaou [5] and E.W. Larsen and J.B. Keller [8] and it
has been the topic of many papers since (see in particular C. Bardos, R. Santos
and R. Sentis [1] and P. Degond, T. Goudon and F. Poupaud [6] and references
therein). It is well known (see [6] for instance) that for α = 2, the distribution
function fε converges, as ε → 0, to a function ρ(x, t)M(v) with ρ solution of
the diffusion equation

∂tρ− div (D∇ρ) = 0

where

D =
∫
v ⊗ vM(v)

ν(v)
dv. (6)
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We are interested in a situation in which this limit fails because of the
degeneracy of the collision frequency. More precisely, we will assume that ν(0) =
0 and

ν(v) ∼ ν0|v|N+2+β , as |v| → 0 for some β > 0. (7)

The restriction β > 0 and the fact that M(0) > 0 implies that the diffusion
matrix D above is infinite, because of the non integrable singularity at v = 0.
In that case, the usual diffusion limit breaks down, which can be interpreted by
saying that the time scale t ∼ ε−2 was too long. We will thus show that for
an appropriate choice of α < 2 (depending on β), the asymptotic regime ε→ 0
in (1) gives rise to anomalous diffusion regimes (the term anomalous refers to
the fact that the mean squared displacement of a particle is no longer a linear
function of time).

In previous works, we investigated similar anomalous diffusion regimes, that
were due to the large velocity (|v| → ∞) behavior of the equilibrium function
M and the collision frequency ν. In particular it is shown, in [10, 9, 4], that if
ν is bounded and non-degenerate and M(v) is a heavy tail function satisfying

M(v) ∼ |v|−N−α as |v| → ∞, for some α ∈ (0, 2)

(the restriction α < 2 implies that the diffusion matrix D above is infinite
because of the behavior of the integrand for |v| → ∞) then the solution of (1)
converges to ρ(x, t)M(v) with ρ solution of a fractional diffusion equation of
order α.

The goal of this paper is to show that a similar phenomenon can arise when
the equilibrium function is, for instance, the usual Maxwellian distribution, but
the collision frequency satisfies (7).

In order to make the computations a little bit simpler, we will assume that
there exists δ > 0, β > 0 and ν0 > 0 such that

ν(v) = ν0|v|N+2+β , for |v| ≤ δ
M(v) = M0 > 0 , for |v| ≤ δ.

(8)

Neither of these conditions are really necessary, and it is easy to check that they
could be replaced by

lim
|v|→0

ν(v)
|v|N+2+β

= ν0 > 0 , lim
|v|→0

M(v) = M0 > 0.

Next, as usual with diffusion limits, it is very important to assume that the flux
associated to M(v) vanishes: ∫

RN
vM(v) dv = 0 (9)

(this is usually a consequence of the fact that M(−v) = M(v)). Finally, we
need the following technical assumptions (which clearly holds for a wide range
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of functions ν(v) if M(v) is a Maxwellian distribution function):∫
|v|≥δ

|v|2

ν(v)
M(v) dv <∞,

∫
RN

ν(v)2M(v) dv <∞ (10)

(the first inequality - in which we recognize the integrant of the diffusion matrix
(6) - asserts that the only problem in the break down of the usual diffusion limit
is due to the behavior of ν and M for small velocity. The second inequality will
be used to show that ρεν is bounded in L2).

We can now state our main result:

Theorem 1.1. Assume that (8), (9) and (10) hold and let

α =
β + 2N + 2
β +N + 1

= 2− β

β +N + 1
. (11)

Then the solution fε of (1) converges weakly in L2
νM−1(RN ×RN × (0, T )) to a

function ρ(x, t)M(v) where ρ solves{
∂tρ+ κ(−∆)α/2ρ = 0
ρ(x, 0) = ρ0

(12)

with
κ =

1
cN,α

1
β +N + 1

M0

να−1
0

∫ ∞
0

zαe−z dz.

The constant cN,α is the constant that appears in the definition of the frac-
tional Laplace operator as a singular integral:

(−∆)α/2u = cN,αP.V.
∫

RN

u(x)− u(x+ y)
|y|N+α

dy

Note that when β > 0, α defined by (11) satisfies

1 < α < 2.

The critical case β = 0, which would give α = 2 is also interesting. The standard
diffusion limit (with time scale ε2) fails in that case, and following [10], it can
be checked that one needs to consider an anomalous diffusion scaling in (1)
(ε2 ln(ε−1) instead of εα in (1)) but that the limiting density ρ will solve a
standard diffusion equation.

It is also worth noticing that unlike the anomalous diffusion regime due to
power tail equilibrium functions, the degenerate collision frequency framework
cannot lead to fractional diffusion equation of order less than one (there were
no such restriction in [10, 9, 4]).

The main interest of this paper is thus to show that anomalous diffusion is
not necessarily due to fast particles and that it does not require the thermo-
dynamical equilibrium to have infinite moments. In particular, it can occur as
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asymptotic model for kinetic equations in which the velocity is bounded (rela-
tivistic models) or when the variable v is replaced by a wave vector k lying in a
torus TN (as in the modeling of transport in semiconductor devices).

Such an equation arises in the modeling of weak turbulence for chains of
harmonic oscillators: In [2], Basile, Olla and Spohn show that the density of en-
ergy distribution f(x, k, t) for a chain of harmonic oscillators with Hamiltonian
dynamics perturbed by stochastic terms, satisfies a linear phonon Boltzmann
equation of the form

∂tf + v(k) · ∂xf = L(f) (13)

where
L(f) =

∫
σ(k, k′)[f(k′)− f(k)] dk′.

Here, the Fourier mode k belongs to T1 and the velocity v(k) = ω′(k) is the
derivative of the dispersion relation of the lattice. It satisfies (see [2]) v(k) ∼
1 as k → 0. Furthermore, the collision frequency is degenerate for small k
and satisfies ν(k) ∼ |k|2 as k → 0. Our framework then applies (with minor
modifications) and shows that for an appropriate scaling, the long time behavior
of f can be described by an anomalous diffusion equation of order α = 3/2. We
thus recover, by a very different approach, a result that Jara, Komorowski and
Olla [7] obtained using a purely probabilistic approach.

The general method developed in this paper is similar to that of [9]: Deriva-
tion of a priori estimates, multiplication of (1) by the solution of an appropriate
auxiliary equation and passage to the limit. However, the classical a priori
estimates for (1) (which are used in [9]) do not hold for degenerate collision
frequencies and so new estimates are needed (see Lemma 2.2).

Dedication: This paper is the first of a series of projects that we were discussing
with Naoufel Ben Abdallah when he passed away on July 5th 2010. Naoufel
was a talented mathematician and a wonderful collaborator. He was also a very
generous person, deeply devoted to his family and to his friends. By his constant
support he played a determinant role in our (young) careers. We did our best
to complete this work without him and hope that this final version meets his
very high standard.

Acknowledgment: A. Mellet gratefully thanks the Institut de Mathématiques
de Toulouse at the Université Paul Sabatier, where most of this research was
performed, for its hospitality.
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2 Proof of Theorem 1.1

2.1 A priori estimates

It is a classical result that operators of the form (2) satisfy

−
∫

RN
L(f)

f

M
dv ≥ 0.

Under some conditions on the collision kernel (see for instance [10]) one can
usually also show that

−
∫

RN
L(f)

f

M
dv ≥ c||f − ρM ||2L2

M−1

where ρ =
∫

RN f dv. When the collision frequency is degenerate, however, such
an estimate does not seem to hold, but a simple computation yields the following
lemma:

Lemma 2.1. Assume that b(v, v′) = a(v)a(v′). Then

−
∫
L(f)

f

M
dv =

∫
ν(v)
|f − ρνM |2

M
dv

where

ρν =

∫
ν(v)f(v) dv∫
ν(v)M(v) dv

.

Note that a similar result holds for more general collision kernel that do not
satisfy (4). Indeed, we have:

Lemma 2.2. Assume that L is given by (2) where b(v, v′) satisfies (3) and

sup
v∈RN

∫
RN

ν(v)ν(v′)2

b(v, v′)
M(v′) dv′ ≤ C <∞. (14)

Then,

−
∫
L(f)

f

M
dv ≥

(∫
νM dv

)2
2C

∫
ν(v)
|f − ρνM |2

M
dv

for all f .

This lemma is the only technical lemma that is needed to generalize Theo-
rem 1.1 to more general collision operators (still given by (2)) and it is also of
independent interest. We thus give its proof in Appendix A, even though it is
not required for the proof of Theorem 1.1.
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Multiplying (1) by fεM−1 and integrating with respect to x and v, we deduce
the following equalities:

εα
d

dt

∫
R2N

(fε)2

2
M−1 dvdx =

∫
R2N

L(fε) fεM−1 dvdx

= −
∫

R2N
ν(v)|fε − ρενM |2M−1 dvdx (15)

We thus introduce the spaces L2
M−1 and L2

νM−1 equipped with the norms:

||f ||L2
M−1

=
∫

RN

∫
RN
|f(x, v)|2M(v)−1 dv dx

and
||f ||L2

νM−1
=
∫

RN

∫
RN
|f(x, v)|2ν(v)M(v)−1 dv dx.

Integrating (15) with respect to t, we deduce the following proposition:

Proposition 2.3. The solution fε of (1) satisfies the following estimates:

sup
t
||fε(t)||L2

M−1
≤ ||f0||L2

M−1
(16)

||gε||L2(0,∞;L2
νM−1 ) ≤ εα/2||f0||L2

M−1
(17)

where gε = fε − ρενM with ρεν =
R
νfε dvR
νM dv

.

Note that Cauchy-Schwarz inequality also gives:

ρεν(t, x) =
1∫

νM dv

∫
RN

ν
fε

M1/2
M1/2 dv

≤
(∫
ν2M dv

)1/2∫
νM dv

(∫
RN

(fε)2

M
dv

)1/2

,

and so (using (10))

sup
t≥0

∫
RN

ρεν(t, .)2 dx ≤ C sup
t≥0
‖fε‖2L2

M−1
≤ C‖f0‖2L2

M−1
. (18)

We deduce

Corollary 2.4. The sequence fε converges weakly in L∞(0, T ;L2
M−1(RN×RN ))

to a function ρ(x, t)F (x, v) where ρ is the weak limit of ρεν in L∞(0, T ;L2(RN )).

2.2 An auxiliary equation

The main tool in the proof of Theorem 1.1 is the introduction of an appropriate
auxiliary equation. Proceeding as in [9], we consider χε(x, v, t) solution of

ν(v)χε(v)− εv · ∇xχε = ν(v)ϕ(x, t), (19)
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where ϕ(x, t) is a test function in D(RN × [0,∞)). A simple computation shows
that χε is given by the following formula:

χε =
∫ ∞

0

e−ν(v)zν(v)ϕ(x+ εvz, t) dz,

and we will make repeated use of the following formula:

χε − ϕ =
∫ ∞

0

e−ν(v)zν(v)[ϕ(x+ εvz, t)− ϕ(x, t)] dz. (20)

In the next section, we will use χε as a test function in (1). We thus point
out that χε is smooth and bounded in L∞. Moreover, we have

|χε − ϕ| =
∣∣∣∣∫ ∞

0

e−ν(v)zν(v)
[
ϕ(x+ εvz, t)− ϕ(x, t)

]
dz

∣∣∣∣
≤ ||Dϕ||L∞ε|v|,

and thus
χε(x, v, t) −→ ϕ(x, t) as ε→ 0

uniformly with respect to x and t. However, this convergence is not uniform
with respect to v, so we will need the following lemma:

Lemma 2.5. Let ϕ ∈ D(RN × [0,∞)), and define χε by (20). Then

χε −→ ϕ strongly in L∞(0,∞;L2
M (RN × RN ))

and
∂tχ

ε −→ ∂tϕ strongly in L∞(0,∞;L2
M (RN × RN ))

Proof. Using (20) we get

||χε − ϕ||2L2
M

=
∫

R2N
M(v)

∣∣∣∣∫ ∞
0

e−ν(v)zν(v)[ϕ(x+ εvz)− ϕ(x)] dz
∣∣∣∣2 dx dv

≤
∫

R2N
M(v)

∫ ∞
0

e−ν(v)zν(v)[ϕ(x+ εvz)− ϕ(x)]2 dz dx dv

≤
∫

RN

∫ ∞
0

M(v)e−ν(v)zν(v)||ϕ(·+ εvz)− ϕ||2L2(RN ) dz dv.

It is well know that

lim
ε→0
||ϕ(·+ εvz)− ϕ||2L2(RN ) = 0 for all v and z.

Furthermore,

M(v)e−ν(v)zν(v)||ϕ(·+ εvz)− ϕ||2L2(RN ) ≤ 2||ϕ||2L2(RN )M(v)e−ν(v)zν(v)

Since M(v)e−ν(v)zν(v) is in L1(RN × (0,∞)) (in fact, its integral is equal to 1),
Lebesgue dominated convergence theorem gives the result.

A similar proof holds for ∂tχε (t is just a parameter here).
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2.3 Weak formulation and passage to the limit

Now, we use χε as a test function in (1): Multiplying (1) by χε and integrating
with respect to x, v, t, we get:

−εα
∫ ∞

0

∫
R2N

fε∂tχ
ε dx dv dt− εα

∫
R2N

f0(x, v)χε(x, v, 0) dx dv

=
∫ ∞

0

∫
R2N

νρενMχε − νfεχε + fεεv · ∇xχε dx dv dt

which, using the auxiliary equation (19), yields:

−
∫ ∞

0

∫
R2N

fε∂tχ
ε dx dv dt−

∫
R2N

f0(x, v)χε(x, v, 0) dx dv

= ε−α
∫ ∞

0

∫
R2N

νρενMχε − νfεϕ(x, t) dx dv dt

= ε−α
∫ ∞

0

∫
R2N

νρενMχε dx dv dt−
∫
ρεν

(∫
νM dv

)
ϕ(x, t) dx dt.

We deduce:

−
∫ ∞

0

∫
R2N

fε∂tχ
ε dx dv dt−

∫
R2N

f0(x, v)χε(x, v, 0) dx dv

= ε−α
∫ ∞

0

∫
RN

ρεν

∫
RN

ν(v)M(v) [χε(x, v, t)− ϕ(x, t)] dv dx dt

which we write as

−
∫ ∞

0

∫
R2N

fε∂tχ
ε dx dv dt−

∫
R2N

f0(x, v)χε(x, v, 0) dx dv

=
∫ ∞

0

∫
RN

ρενLε(ϕ)dx dt (21)

with
Lε(ϕ) = ε−α

∫
RN

ν(v)M(v) [χε(x, v, t)− ϕ(x, t)] dv.

The rest of the proof consists in passing to the limit ε → 0 in (21). We imme-
diately check that the left hand side converges to

−
∫ ∞

0

∫
RN

ρ ∂tϕdx dt−
∫

RN
ρ0(x)ϕ(x, 0) dx

(this is an immediate consequence of Lemma 2.5 and Corollary 2.4). Passing to
the limit in the right hand side of (21) is the most interesting part of the proof
since the nonlocal operator should now appear in the limit of Lε (it is also the
part of the proof that differs the most from [9]). More precisely, we have to
prove:
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Proposition 2.6. Assume that the conditions of Theorem 1.1 hold and that χε

is defined by (19). Then

Lε(ϕ) := ε−α
∫

RN
ν(v)M(v) [χε(x, v, t)− ϕ(x, t)] dv (22)

converges strongly in L2(RN × (0,∞)) as ε goes to zero to

−κ(−∆)α/2(ϕ) = κ cN,α PV
∫

RN

ϕ(x+ y)− ϕ(x)
|y|N+α

dy

with κ given in Theorem 1.1 (note that we also have uniform convergence with
respect to x and t).

Proposition 2.6 and the weak convergence of ρε allow us to pass to the limit
in the right hand side of (21). We deduce:

−
∫
ρ ∂tϕdx dt−

∫
ρ0(x)ϕ(x, 0) dx = −

∫
ρκ(−∆)α/2ϕdx dt

which is the weak formulation of (12). This completes the proof of Theorem 1.1,
and it only remains to prove Proposition 2.6.

Proof of Proposition 2.6. We split the integral in (22) into two parts by writing

Lε(ϕ) = Iε1(x, t) + Iε2(x, t)

with

Iε1(x, t) = ε−α
∫
|v|≥δ

ν(v)M(v) [χε(x, v, t)− ϕ(x, t)] dv

Iε2(x, t) = ε−α
∫
|v|≤δ

ν(v)M(v) [χε(x, v, t)− ϕ(x, t)] dv.

We first show that only the small values of |v| matter in (22), by showing that
Iε1(x, t) goes to zero: Using formula (20) and integrations by parts, we can write

ν(v)[χε(x, v, t)− ϕ(x, t)] =
∫ ∞

0

ν(v)2e−ν(v)z[ϕ(x+ εvz, t)− ϕ(x, t)] dz

=
∫ ∞

0

ν(v)e−ν(v)zεv · ∇xϕ(x+ εvz, t) dz

= εv · ∇xϕ(x) + ε2
∫ ∞

0

e−ν(v)zvT ·D2
xϕ(x+ εvz, t) · v dz.

Using the null flux condition (9) (and the fact that M = M0 for |v| ≤ δ), we
deduce

Iε1(x, t) = ε2−α
∫
|v|≥δ

∫ ∞
0

M(v)e−ν(v)zvT ·D2
xϕ(x+ εvz, t) · v dz. dv
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and so

Iε1(x, t) ≤ ε2−α

(∫
|v|≥δ

∫ ∞
0

M(v)|v|2e−ν(v)z dz dv

)1/2

×

(∫
|v|≥δ

∫ ∞
0

M(v)|v|2e−ν(v)z|D2
xϕ(x+ εvz, t)|2 dz dv

)1/2

.

We deduce

||Iε1(t)||L2(RN ) ≤ ε2−α||D2
xϕ(t)||L2(RN )

(∫
|v|≥δ

∫ ∞
0

M(v)|v|2e−ν(v)z dz dv

)

≤

(∫
|v|≥δ

M(v)
|v|2

ν(v)
dv

)
||D2

xϕ(t)||L2(RN )ε
2−α

which goes to 0 as ε→ 0 (note that we use (10) here).

So it only remains to show that Iε2(x, t) converges strongly in L2(RN×(0,∞))
to −κ(−∆)α/2(ϕ). We have:

Iε2(x, t) = ε−α
∫
|v|≤δ

∫ ∞
0

e−ν(v)zν(v)2M(v)[ϕ(x+ εvz, t)− ϕ(x, t)] dz dv.

Integrating by parts (with respect to z) and performing the change of variable
s = ν(v)z, we can write

Iε2(x, t) = ε−α
∫
|v|≤δ

∫ ∞
0

e−ν(v)zν(v)M(v)εv · ∇xϕ(x+ εvz, t) dz dv

= ε−α
∫
|v|≤δ

∫ ∞
0

e−sM(v)εv · ∇xϕ(x+ ε
v

ν(v)
s, t) ds dv.

We now use Condition (8) and the change of variable w = ε v
ν0|v|N+2+β . We

denote γ = N + 1 + β, so that

w = ε
v

ν0|v|γ+1
, |w| = ε

ν0
|v|−γ , v =

(
ε

ν0|w|γ+1

) 1
γ

w

and

dv =
1
γ

(
ε

ν0|w|γ+1

)N
γ

dw.
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We deduce (note that α = γ+N+1
γ ):

Iε2(x, t)

= M0ε
−α
∫
|v|≤δ

∫ ∞
0

e−sεv · ∇xϕ(x+ ε
v

ν0|v|γ+1
s, t) ds dv

= M0ε
−α
∫
|w|≥ ε

ν0
δ−γ

∫ ∞
0

e−s
(

εγ+1

ν0|w|γ+1

) 1
γ

w · ∇xϕ(x+ ws, t) ds
1
γ

(
ε

ν0|w|γ+1

)N
γ

dw

=
ε−αε

γ+1+N
γ

γ

M0

ν
(N+1)/γ
0

∫
|w|≥ ε

ν0
δ−γ

∫ ∞
0

e−s
1

|w|N+ γ+1+N
γ

w · ∇xϕ(x+ ws, t) ds dw

=
1
γ

M0

να−1
0

∫
|w|≥ ε

ν0
δ−γ

∫ ∞
0

e−s
1

|w|N+α
w · ∇xϕ(x+ ws, t) ds dw (23)

The integral above can also be written as

Jε =
∫
|w|≥c(δ)ε

∫ ∞
0

e−s
ϕ(x+ ws, t)− ϕ(x, t)

|w|N+α
ds dw. (24)

The definition of the Cauchy principal value implies that it converges (pointwise)
to

J0 = PV
∫

RN

∫ ∞
0

e−s
ϕ(x+ ws, t)− ϕ(x, t)

|w|N+α
ds dw

=
(∫ ∞

0

e−ssα ds

)
PV

∫
RN

ϕ(x+ y, t)− ϕ(x, t)
|y|N+α

dy

for all (x, t), which is what we wanted. In order to show that we have convergence
in L2(RN ), we recall that we can also write

J0 =
∫
|w|≥1

∫ ∞
0

e−s
ϕ(x+ ws, t)− ϕ(x, t)

|w|N+α
ds dw

+
∫
|w|≤1

∫ ∞
0

e−s

|w|N+α
[ϕ(x+ ws, t)− ϕ(x, t)− sw · ∇ϕ(x)] ds dw

with all integrals being defined in the classical sense (no principal value). Pro-
ceeding similarly, we can rewrite (24) as follows:

Jε =
∫
|w|≥1

∫ ∞
0

e−s
ϕ(x+ ws, t)− ϕ(x, t)

|w|N+α
ds dw

+
∫
c(δ)ε≤|w|≤1

∫ ∞
0

e−s

|w|N+α
[ϕ(x+ ws, t)− ϕ(x, t)− sw · ∇ϕ(x, t)] ds dw

and so

Jε − J0 =
∫
|w|≤c(δ)ε

∫ ∞
0

e−s

|w|N+α
[ϕ(x+ ws, t)− ϕ(x, t)− sw · ∇ϕ(x, t)] ds dw.
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Finally, integrating by parts (twice) with respect to s, we deduce:

Jε − J0 =
∫
|w|≤c(δ)ε

∫ ∞
0

e−s

|w|N+α
wT ·D2ϕ(x+ ws, t) · w ds dw

and so using the fact that∫
|w|≤c(δ)ε

∫ ∞
0

e−s

|w|N+α−2
ds dw ≤ Cε2−α

we deduce (∫
RN
|Jε − J0|2 dx

)1/2

≤ C||D2ϕ(·, t)||L2(RN ) ε
2−α.

Since α < 2, this implies that Iε2 converges strongly in L2(RN × (0,∞)) to
−κ(−∆)α/2(ϕ).

Writing
Lε(ϕ) = Iε1(x, t) + Iε2(x, t),

this completes the proof of Proposition 2.6

A Proof of Lemma 2.2

We stress out the fact that a similar estimate (with ρ instead of ρν) was derived
in [10] under the condition:∫

RN
M(v′)

ν(v)
b(v, v′)

dv′ ≤ C for all v ∈ RN ,

which, in the simplest case b(v, v′) = a(v)a(v′), is equivalent to∫
RN

M(v′)
a(v′)

dv′
∫
a(v′)M(v′) dv′ ≤ C.

Unfortunately, this condition is clearly incompatible with the degeneracy of the
collision frequency (8). By contrast, condition (14) reduces, when b(v, v′) =
a(v)a(v′), to ∫

RN
a(v)M(v) dv <∞

and is thus clearly satisfied.

Proof of Lemma 2.2. A simple computation using (3) yields

−
∫

RN
L(f)

f

F
dv =

1
2

∫
RN

∫
RN

b(v, v′)MM ′
[
f ′

M ′
− f

M

]2
dv dv′, (25)
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where M = M(v) and M ′ = M(v′). Next, integrating (with respect to v′) the
identity

f ν′M ′ − f ′ ν′M = ν′MM ′
[
f

M
− f ′

M ′

]
we get

f

∫
νM dv − ρνM

∫
νM dv =

∫
RN

ν′MM ′
[
f

M
− f ′

M ′

]
dv′

or

g

∫
νM dv =

∫
RN

ν′MM ′
[
f

M
− f ′

M ′

]
dv′

where g = f − ρνM . The Cauchy-Schwarz inequality implies

g2

(∫
νM dv

)2

≤

(∫
RN

b(v, v′)MM ′
[
f

M
− f ′

M ′

]2
dv′

) (∫
RN

ν′2

b(v, v′)
MM ′ dv′

)
,

so that∫
RN

νg2

M
dv

(∫
νM dv

)2

≤
(

sup
v∈RN

∫
RN

νν′2

b(v, v′)
M ′dv′

) (∫
RN

∫
RN

bMM ′
[
f

M
− f ′

M ′

]2
dv′ dv

)
and (25) gives the result.
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