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1 Introduction
1.1 Optimal Transportation Theory

The origin of optimal transportation problems goes back to the memoir “sur les déblais et les remblais” published
by Monge near 1780. A new formulation of these problems in terms of infinite dimensional linear programs was
introduced by Kantorovich around 1940 leading to the so-called Monge-Kantorovich problem (see the book by
Rachev and Riischendorf [23] for a detailed review) :

Given two probability measures pg, p1 on a metric space D, find a probability measure p on the product space
D x D, with projections py and p; on each copy of D, that minimizes the cost

/ cost(z,y)du(z,y),
D2

where cost(z,y) is the “transportation cost” to go from point x € D to point y € D, usually defined in terms of
the distance d(z,y) between x and y. In this formulation, u(z,y) should be understood as the probability for
point z € D to be transported at point y € D. In the special case when

P
cost(z,y) = 7d(m, y)

p

(where 1 < p < 400) the optimal cost raised to the power 1/p defines a distance on the set Prob(D) of all
(Borel) probability measures on D. This distance, called Monge-Kantorovich distance (or Wasserstein distance,
there are many other names) with exponent p, confers a metric stucture to the weak-* topology of Prob(D).
In the case when D is a Riemannian manifold and p = 2, the Monge-Kantorovich distance confers a (formal)
Riemannian structure to Prob(D), as shown by Otto [20].

The discrete counterpart of the Monge-Kantorovich problem belongs to the field of Operational Research and
Combinatorial Optimization (Linear Assignment Problems, in particular, see [24] for an elementary introduc-
tion).

A bridge between Optimal Transportation Theory (OT'T) and non-linear PDEs was established by the first
author in [6] (see [7] for more details) where the quadratic OTT corresponding to exponent p = 2 and D = R?
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was shown to be directly related to the (real) Monge-Ampére equation (a fully non-linear elliptic PDE with
strong geometric features, [22]). Earlier and more involved connexions with non-linear PDEs were established
by Cullen and Purser in [13], where a variant of the quadratic OT'T was involved in the definition of the semi-
geostrophic model for atmospheric fronts, and in [5] (which motivated [6]) where the quadratic OT'T was derived
from a time discretization of the Euler equations of incompressible fluids written in Lagrangian coordinates.
Once the regularity analysis of the quadratic OTT in connexion with the Monge-Ampére equation was achieved
by L. Caffarelli [12], OT'T has became a flourishing field of non-linear PDEs. It has been discovered since that
many other important non-linear PDEs have an underlying optimal transportation structure. In particular the
original Monge problem (which corresponds to exponent p = 1), studied by Sudakov [25] in the Kantorovich
setting, was related to the Eikonal equations by Evans and Gangbo [14] and can be applied to Optimum Design,
as shown by Bouchitté and Buttazzo [4]. A large collection of dissipative equations, such as the heat equation,
the so-called porous media equation, the thin film equations, some granular flow equations, etc... have been
also interpreted as gradient flows for the Monge-Kantorovich (formally Riemannian) metric corresponding to
exponent p = 2 [19], [20], [16] etc...

Optimal Transportation Theory also turns out to be a powerful tool in theoretical Statistics, Functional Analysis
and Calculus of Variations [18], [1], [21], ...

A different formulation of the quadratic OTT in terms of classical Continuum Mechanics was proposed by J.-D.
Benamou and the first author in [2] for numerical purposes :

Given a compact convex domain D in R?, and two probability measures py and p; on D, find a nonnegative
time and space dependent measure c(t,z), for ¢t € [0,1] and © € D and a ¢— square integrable vector field
v(t,z) € R, parallel to the boundary D, minimizing

1
/ §|v(t,:r)|2c(dt,d:r)
subject to d;¢ + div(cv) = 0 and to initial and final conditions

c(t=0,2) = po(x), c(t=1,2)=pi(x).

(We have used notations |.| for the Euclidean norm, div = V- for the divergence operator, where V =
(0zy,---,0z,) and - is the Euclidean inner product in R?.)

It was shown that the resulting infimum coincide with the optimal transportation cost corresponding to
cost(z,y) = 1/2|z — y|? (see [10] for a detailled proof). Notice that this minimization problem is no longer
a linear program involving a nonnegative measure y defined on the 2d dimensional product space D x D, as the
Monge-Kantorovich problem is, but rather a convex (homogeneous of degree 1) minimization problem in the
nonnegative and vector-valued measures ¢ and m = cv defined on the d+ 1 dimensional product space [0, 1] x D.
This alternative formulation has a very simple interpretation in terms of Fluid Mechanics. It amounts to min-
imize the kinetic energy of a fluid carying the density field from py at time ¢ = 0 to p; at time ¢t = 1. The
optimality condition (at least at the formal level) for the fluid to achieve the infimum is extremely simple. The
velocity field must be potential and the acceleration field must be null

v=V¢, O+ (v.V)v =0.

(See [2] for more details.)

1.2 Multiphasic Optimal Transportation Theory

The Fluid Mechanics formulation of the Optimal Transportation problem has many possible extensions. One
possible extension is the optimal transportation of currents, instead of densities, as discussed in [10], which
provides non linear models for classical Electrodynamics related to the Born-Infeld theory [3]. The second
possible extension is the optimal transportation of multiple phases in a domain D and in a time interval [0, T'].
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Imagine that instead of a single phase, described as above by its density and velocity fields ¢(¢,z), v(t,x),
depending on time ¢t € [0,T] and space ¢ € D, we rather consider several phases, labelled by a, each of them
having its own density and velocity fields ¢(¢, z, a), v(t, z,a), still subject to

e + divg(cv) =0,

v being tangent to the boundary 0D. Then, we can define the total density

p(t,z) = Z c(t, z,a).

a

It is natural to prescribe p(¢,z) = 1, which means that all the volume available is occupied by the different
phases. (Then ¢(t,z,a) can also be seen as the concentration of phase a at time ¢ and point z.) A natural cost
is the kinetic energy of the phases integrated in both ¢ € [0, T] and a and weighted by w(a) > 0,

T )
za:/o /Dgw(a)|v(t,w,a)| c(t, z, a)dtdz.

Then, given the concentration fields at time ¢ = 0 and time ¢t = T', namely co(z, a) and ¢y (z,a), we may look for
an optimal transportation plan (¢,v). This is still a convex (homogeneous of degree 1) minimization problem in
the concentration fields ¢(¢, x,a) and momentum fields m(¢, x,a) = v(t, x, a)c(t, z,a). There are many possible
interpretations of this multiphasic optimal transportation problem with prescribed total density. For instance,
it could correspond to a continuous version of the following rather realistic network problem for traffic flows
(cars, airplanes, computers,...) :

Several groups of individuals (each group being labelled by a) must collectively move from their initial location
at time ¢ = 0 distributed in space according to the concentration field ¢o(z, a) (each individual being indistin-
guishable from the other members of its own group) to their final destination distributed according to cr(z,a)
at time T, through a given network D. During their motion, the different groups are subject to share all the
available room at each time ¢ and each point z of the network D. A particularly relevant situation is the case
when a “void” phase is introduced, say with label a = 0 and w(0) = 0. Then for the other phases, the constraint

Zc(t7 .’I:, a) S ]'7

a#0

says that there is a saturation rate in the network not to be exceeded, and the total cost to be minimized is just

> [ gul@letta)ett . ayids

a#0

The multiphasic optimal transportation problem with density constraint has been first addressed in [8] in the
special case of equal weights w(a) = 1 and related to the Euler equations of incompressible fluids. A more
refined analysis (including the case when the label variable a belongs to a measure space (4, da) which need not
be discrete) was provided in [9]. It is shown that, in the case D = [0,1]?, w(a) = 1, there are always optimal
plans ¢(t, z, a), v(t,z,a) that are solutions (in a suitable weak sense) of the following set of PDEs :

Oc + divy (cv) =0, Z c(t,z,a) =1,

O+ (v.V)v+Vp=0,

where p(¢,z), the Lagrange multiplier associated with the density constraint, does not depend on the label
variable a. The later equation implies that all phases a have the same acceleration field (namely Vp) which
does not depend on a. In addition Vp is shown to be uniquely determined by the data cy(z,a) and er(z,a). In
other words, in the framework of networks, there is a neutral way of driving particles which does not depend
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on the phase they belong to. This property of the multiphasic optimal transportation problem might be useful
for some tentative applications. (For instance, in air traffic control, as explained to us by Daniel Delahaye, it is
important to use rules that do not discriminate among air companies. In our case, the acceleration field does
not discriminate among phases.)

In the present paper, a similar multiphasic optimal transportation problem is addressed where the cost function
is unchanged, but the constraint is no longer on the total density field p(t,z) = }_, c(t,z,a) but rather on the
total momentum u(t,z), defined by

u(t,xz) = Z v(t, z,a)c(t, z,a).

a

So, we assume that u is prescribed. Notice that p and w are linked by the continuity equation
Orp + divu = 0.

Thus, if we assume the initial and final values of ¢(t, z,a) to satisfy the compatibility condition
ZCO(II"’ a’) = ZCT(CE,G) =1
a a

and u to be divergence free, then automatically p = 1 will be enforced. So, under these assumptions, we can
see the total momentum constraint as a reinforcement of the total density constraint previously considered.
(Except in the very special case of one space dimension d = 1, when both constraints are merely equivalent.)

As a first “application” of the multiphasic optimal transportation problem, we may use the momentum con-
straint just to get a suboptimal solution of the problem with density constraint. For instance, if there are only
two phases, a = 0 and a = 1, and the total momentum is prescribed to be null, v = 0, then we can reduce
the optimal two-phase transportation problem to a single phase transportation problem with a modified cost.
Indeed, it is enough to set

m(t,x) = m(t,z,0) = —m(t,z, 1), c(t,z) =c(t,z,0)=1—c(t, z,1),

to see that the two-phase problem is equivalent to

T () w(l)
1nf/0 /D 2|m(t,a:)| (c(t,a:) + l—c(t,m))dtdx

subject to 0;c+ divim = 0, with ¢(¢, z) prescribed at ¢ = 0 and ¢t = T and valued in [0, 1]. Such a reduction to a
single-phase problem would not be possible with the density constraint (except in the very special case of one
space dimension d = 1).

More generally, various applications of the “multiphasic optimal transportation problem with prescribed to-
tal momentum” to networks and traffic flow are conceivable. Let us just quote an example. In some situations,
it might be desirable to move individuals from their initial position to their final position with zero total mo-
mentum v = 0. Such a motion, for instance, would be invisible to any observer that is only able to measure
total density and total momentum. (Of course one of the phases could be used as a lure for this furtive motion.)

1.3 Optimality equations

Let us now briefly discuss what are the expected optimality equations of the multiphasic optimal transportation
problem with prescribed total momentum. To get them, let us first introduce two Lagrange multipliers, the
first one for the continuity equation of each phase, denoted by ¢(t,z,a) € R, and the second one, denoted by
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H(t,z) € R?, depending only on the time and space variables, to enforce the total momentum to be pointwise
equal to u(t,z). So, we get the following saddle-point problem

inf sup Z /{lw(a)|v(t,:r,a)|2 — 0p(t,z,a) — (H(t,z) + Ve d(t,z,a))v(t, z,a) }c(t, z,a)dtdx
GV Hé 2

+/H(t,a:).u(t,a:)dtd:r + /(gzﬁ(l,a:,a)cT(a:,a) — ¢(0,z,a)co(z,a))dz.

(Indeed, the supremum in H and ¢ is either 0 or +00 depending on whether or not the constraints are fullfilled.)
The formal optimality equations can be obtained by varying this expression with respect to ¢ and v. (Notice
that it would be more correct to use ¢ and m = cv instead of ¢ and v since the optimal transportation problem
is convex in (¢,m) not in (¢,v). However, the formal optimality equations do not depend on such a change of
variable.) Let us derive these equations in the most interesting case d = 3. We get, first by varying v,

w(a)o(t, z,a) = H(t,x) + Va2 o(t, 2, a),

next by varying c,
%w(a)h}(t,x, a’)|2 - at¢(t7w7 a’) - (H(t,.fl?) + vw¢(t7w7 a)).v(t,m,a) =0.

We can eliminate the Lagrange multiplier ¢ by taking the curl of the first equation and the gradient of the
second one, which leads to :
w(a)curlv(t, z,a) = curlH (¢, x),

1
O(w(a)o(t,z,a) = H(t,2)) + Va(Guw(a)lv(t, z,0)*) = 0.
We can write the second equation as
w(a)(0r +v(t,z,a).Vy)v(t,z,a) = E(t,x) +v(t,z,a) A B(t,x),

where
E(t,z) = 0:H(t,z), B(t,z) = —curlH(t,x),

satisfy
divB =0, 0:B+ curlE =0. (1)

Thus, each phase a is driven by the same “Lorentz force” generated by the fields £ and B which do not depend
on labels a. An equivalent formulation is

w(a) (0 (cv) + divy (cv @ v))(t, x,a) = c(t,z,a)(E(t, ) +v(t,z,a) A B(t, x)). (2)

1.4 A link with Classical Electrodynamics

In the special case when all the weights are equal, say w(a) = 1, and constraints u = 0, p = 1 are enforced, we
can write (2) in terms of the “phase density” f(t,z,§) defined by

ft,z, &)= Zé({ —v(t,z,a))c(t,z,a), &€ R

The constraints become

f(tzde) = 1, / Ef(t,x,dE) = 0
R3 R3
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and the dynamical equation reads
Ouf +divy (§f) +dive(E+EAB)f) =0. (3)

So we have obtained a system of equations which is very close to the Vlasov equations of Classical Electrody-
namics describing the motion of electrons moving in a uniform background of unit positive charge. The Vlasov
equations involve the “phase density” f(¢,z,£) > 0 of the electrons and the electromagnetic field (E, B). They
include equation (1) and the “relativistic version” of (3), namely

O f + dive(Ef) + dive(E + €A B)f) = 0, (4)

where € = C¢/\/& + C?, C is the speed of light and the physical units are chosen so that electrons have unit
mass and charge. However, in the Vlasov equations, there are no density and momentum constraints. Instead,
the inhomogeneous part of the Maxwell equations is used, namely

e divE(t,z) =1 — f(t,x,dE), e (0.E(t,x) — C?curl B(t,z)) = Ef(t, x, dE), (5)
R3 R3

where ¢ is the electric constant. However, at any physical scale where ¢gC? and C~! are negligible, these
equations can be seen as a relaxation of the total density and momentum constraints. Conversely, the equations
of the multiphasic optimal transportation problem with prescribed total momentum can be seen (at least in
the case of equal weights w(a) = 1 and constraint u = 0) as a (singular) limit of the Classical Electrodynamics
equations.

1.5 Main mathematical results

We will restrict ourself to the particular case when the domain D is the periodic cube D = R3/Z3, the phases
are equally weighted w(a) = 1, and the total density and the total momentum are prescribed to be respectively
1 and 0. Then, it will be shown, for general (compatible) initial and final data co(z,a), cr(z,a) in the class
of (Borel) probability measures on D x A, that the multiphasic optimal transportation problem always admit
a solution (c,v, E, B), where c(t,z,a) is a nonnegative measure, v(t,x,a) is square integrable in (¢, z,a) with
respect to ¢, E(t,r) € R? is a locally bounded measure and B(t,z) is square integrable with respect to the
Lebesgue measure. In addition, optimality equations (2) are satisfied in a suitable weak sense.

2 Definitions, Assumptions and Results
2.1 Mathematical description of a multiphasic flow

We consider a multiphasic flow moving, during a fixed time interval [0, T], in the periodic cube D = R? /Z? with
d = 3. (General notation d will be kept in all proofs where the operator curl is not involved.) Each phase is
labelled by a € A, where A is a (topological) probability space (A, da), typically A =[0,1] or A = D, equipped
with the Lebesgue measure. (Indeed, our proofs do no require a to be a discrete variable.) The motion of each
phase a is described by a density field c(t,z,a) > 0 and a velocity field v(t,z,a) € R?, where t € [0,T] and
x € D. Mathematically, ¢ will be considered as a nonnegative (Borel) measure on the product space @' = Q x A
where @ =[0,7] x D, and v as a vector-valued function on @', square integrable with respect to ¢, so that the
“Action” of the multiphasic flow

1
| Slvtmopde.s,o

(where all phases are equally weighted by w(a) = 1) is finite. A useful formulation of the Action can be obtained
by introducing the “momentum” field defined by m(t,z,a) = v(¢,z,a)c(t,z,a). This makes m a vector-valued
measures on ', absolutely continuous with respect to ¢, v being the Radon-Nikodym density of m with respect
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to c. Let us introduce, for all pair (c,m) of (Borel) measures on Q' respectively valued in R and R?, the convex
function valued in [0, +o00] and defined by

K(c,m) =sup | F(t,z,a)dc(t,z,a)+ ®(t,z,a) - dm(t,z,a)

Fo Jg

where F' and ® are all continuous functions on Q' respectively valued in R and R? subject to

1
F(t,z,a) + §|'I>(t,:n,a)|2 < 0 pointwise.

It is known (see [8], for instance) that K (c, m) is finite if and only if ¢ is nonnegative, m is absolutely continuous
with respect to ¢ and can be written m = v(t,z,a)c(t, z,a) with v € L*(Q’,dc; R?), in which case

K(c,m):/ %|U(t,x,a)|2dc(t,x,a).

Thus K (¢, m) provides a nice definition of the Action as a convex function of the pair (¢, m). We further restrict
ourself to pairs (¢,m) that satisfy the continuity equation

dyc + divym =0 (6)
and initial and final conditions
¢(0,z,a) =co(z,a), and (T, z,a) = cr(z,a)),

in the following weak sense

[ @it t,0,0)delt,2,0) + V. 0,2,0) - din(t,7,0)
(7)
- / (T2, a)er(dz, da) — £(0, 7, a)eo(dz, da),

for all functions f continuous on @', with continuous first order derivatives in (¢,z). Here ¢o and cr are given
probability measures on D x A. The total density and momentum are (weakly) prescribed by assuming

f, x)de(t, z,a) :/ f(t, z)dtdz,
Q' Q

for all continuous function f on @, and

H(t,z)-dm(t,z,a) = / H(t,z) - u(t,z)dtdx (8)
Q’ Q

for all continuous H defined on @ and valued in R?. Here u is a given smooth divergence free vector field on
@ subject to further restrictions. Notice that these conditions are compatible precisely because u is divergence
free and the continuity equation is enforced. All these conditions imply that ¢(¢,z,a) (and similarly m(t, z,a))
can be desintegrated as a probability measure on A, Lebesgue measurable in (¢,2) € (. Because of the
continuity equation, ¢ can also be seen as a probability measure on D x A, continuously depending on t €
[0,T]. Therefore, notations de(t, x,a) = c(dt,dz,da), c(t,z,da), c(t,dz,da), dm(t,z,a) = v(t,z,a)de(t, x,a),
m(t,z,da) = v(t,z,a)c(t,z,da), will be used according to the context. The total density constraint can be
expressed by

/du%mnzl (9)
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for all . The data ¢g and cp are accordingly required to satisfy

/co(a:,da) = /CT(a:,da) =1.

Then, condition (9) automatically follows from (7) and (8). We further assume ¢ and cr to satisfy

/cO(da:,a) - /CT(da:,a) -1,

so that, for each (¢,a), c¢(t,x,a) is a probability measure in z. Finally, notice that the Action can be written as
the time integral of the “kinetic” energy defined by

1
/ Ljo(t,2, ) Pe(t, dr, da),
Q 2

for all ¢t € [0, 7.

2.2 The optimal transportation problem

We are now looking for a pair (¢,m) minimizing K (¢, m) and subject to constraints (7), (8). This amounts to
solve the following saddle-point problem

I(co,er) = inf sup L(e,m, ¢, H),
(e,m)eM (H,$)eH

where L denotes

Lem o, H) = Kiem) = [ o0 adett,.0) = [ V260050 + H, 2] -dmt, .0

+/¢(T,w,a)cT(dw,da) — ¢(0,z,a)co(dx, da) +/QH(t,a:) ~u(t, z)dtdx

with M = M x M?, where M is the set of all (Borel) measures (or, equivalently by Riesz’ theorem, the set of
all linear continuous forms on C(Q’)), and H = C(Q;R¢) x C110(Q"), where C*1-0(Q") stands for the space of
all continuous real-valued function f(t,z,a) of (¢,x,a) € Q' with continuous partial derivatives with respect to
t and z.

So far, the prescribed total momentum u(t,z) is only assumed to be smooth and divergence free. Our main
result is only proven in the case when u = 0. However, most of the intermediary results require less restrictive
conditions.

2.3 The main result

Theorem 2.1 1) Assume D = T? = R /7%, co(z,a) > 0 and cr(x,a) > 0 are probability measures in (x,a) €

D x A subject to
/co(a:,da) = /CT(a:,da) =1,

/cO(da:,a) - /CT(da:,a) —1
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Let u(t, z) be a smooth divergence field. Then, there is always at least a solution (c,m) of the optimal multiphasic
transportation problem. Any optimal solution (c,m) satisfies

m = cv et Oyc + divy,m = 0,
/m(t,x,da) =u(t,z) et /c(t,m,da) =1,

K(c,m) <C
where C = C(T,d,u) does not depend on initial and final conditions.

1
2) In addition, if u = 0, then C(T,d,u) < d?/T, the kinetic energy 3 / |v?c(t, dz, da) is time independent and
there is a vector field H(t,x) such that for all optimal (¢, m)

0¢(cv) + divg (cv ® v) — O H + cv A curlH = 0. (10)

In this equation, E = O;H 1is a locally bounded measure in the interior of Q, B = —curlH is square integrable
in Q with respect to the Lebesgue measure and c(t,z,a) is a well defined extension of c(t,z,a) to the singular
set of E with respect to the Lebesgue measure.

Remark 2.1 A precise definition of ¢ is as follows. Since E = 0;H is a locally bounded vector-valued measure
on the interior of Q, we may consider |E| as a nonnegative Borel measure on @) and consider the Banach space
LY(Q,|E|;C(A)) of all (strongly) |E| measurable and integrable functions f on Q valued in the Banach space
C(A) of all continuous functions on A, for which

1A= [ 1B ) sup |2, < .

t,
It will be shown that, for each fived f € L*(Q, |E|; C(A)), the following integral

r—0e—2z_ 1

Toelf) = [ Bta) [ ftaaelt.dsdon (=55,

(which is well defined for all radial mollifiers v and all unit vector e, since c(t,x,a) depends continuously on t
as a measure in (x,a)) has a unique limit I(f), as § — 0, that do not depend on 7y or e. In addition we have
IO < IFI [|E|. Thus, f — I(f) defines ¢ as a continuous linear form on L'(Q,|E|;C(A)) and we can
write

I(f) = t E(t,a:)/Af(t,:v,a)g(t,a:,da).

As we denote by E” € L'(Q;R?) the regular part of E with respect to the Lebesgue measure, we get (by standard
measure theory)

r—0e—2z_ 1

/QEr(t,a:)dtdm/RdXAf(t,x,a)c(t,dz,da)y(f)éd — /QE’“(t,x)dtda:/Af(t,:r,a)c(t,a:,da).

Thus, ¢ provides an extension of ¢ to the singular set of E.
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3 Main steps of the Proofs

First, we show the existence of an admissible solution (¢, m) with finite Action and obtain
I(Co, CT) < K(C, m) < C(Ta d, ’U,),

where C' = C(T,d,u) depends on T, d and u but not on the initial and final data ¢g, ¢p. This is enough to
enforce that I(co,cr) is achieved by at least one optimal pair (¢, m).

Next, we use the Fenchel-Rockafellar duality theorem to show the existence of approximate optimal Lagrange
multipliers for the constraints :

Proposition 3.1 For each € > 0 there is a pair of continuous functions ¢.(t,z,a) on Q' and H.(t,z) on Q
with O¢pe, Vyde continous on Q’ such that, for all optimal pair (¢c,m),

1
at¢e + §|vm¢e + H6|2 S 0
et

1 1
/ (|at¢e + §|vz¢e + HE|2| + §|'U — Vet + HE|2)dc < e’
Q’

Next, we prove some compactness for H. or, more precisely, for E. = 0;H. and B. = —curlH,, which define H,
up to an irrelevant gauge. We use the Sobolev space G, = H"™([0,T] x D) of all functions of (¢, z) € [0, T]x D
with partial derivatives in L? up to first order in ¢ and up to mo—th order in =, where mg € N has to be chosen
large enough.

Proposition 3.2 Assume that u = 0. Then < E.;g >,< B.;g > are bounded uniformly with respect to € for
all functions g(t,x) compactly supported in 0 <t < T with a finite norm in G.

Next, we get some estimates that formally mean that the gradient in x of v(¢,x,a) (which is not well defined a
priori) is in L?(Q’, dc).

Proposition 3.3 Let 0 < 7 < % and Q) = [1,T — 7] x D x A. Let w(x) be a smooth divergence free field on
D and (t,z) — ¥ (z) be the corresponding flow defined by

(e (2)) = w(e™ (2), "V(2) =

Then we have

[ (o Hott0) vt 2,0 et ) < O (1)
[ a4 )t 2, et .0 < (12)
[T 0.7 (0),0) = (Vo + ot )il .0) < O+ 4 5xe) (19

for all optimal pair (c,m) and for all 6 and & small enough, where x () > ¢ tends to zero with . Here C' depends
only on D, T, 7 and w.

These estimates enable us to get a first set of approximate optimality equations.

More precisely :
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Proposition 3.4 For all continuous functions f(t,x,a), valued in [0,1], compactly supported in 0 < t < T,
with continuous derivatives in (t,z), we have, for all vectors w € R and § > 0,

1
| / —OH.(t,z + odw) - wf(t, z,a)dedo
Q' /0
1
+/ / [v(t,z,a) A curl(H. (t, z + odw)] - wf(t, z,a)dcdo
rJo

— [ O:f(t,z,a)v(t,z,a) - wde — / v(t,x,a) - Vo f(t,z,a)v(t,z,a) - wde| < C’f%(52 + &2 + 0x(e)).

Qr

/

Next, we get estimates that formally mean that the time derivative of v(t,z,a) (which is not well defined a
priori) is in L?(Q’,dc).

Proposition 3.5 Let 0 <7 < L and Q. =[r,T — 7] x D x A. Then
/ lo(t, 2, a) = (Vode + He)(t +n,2,a)*de(t, v, a) < O + 177 +nx'(€)) (14)
QL

for all optimal pair (c,m) and for all n and € small enough, where x'(e) > ¢ lends to zero with €. Here C
depends only on D, T', T and w.

Finally, we are able to pass to the limit (through an appropriate balance between the small parameters €, ¢ and
1) and get, after several intermediate steps,

Proposition 3.6 B = —curlH belongs to L*(Q;R?) and E = 8;H s a locally bounded measure in the interior
of Q. In addition, E and B solve

O¢(cv) + divg(cv @ v) —cE —cv A B = 0.

4 Construction of an admissible pair

Let us check that there is at least an admissible pair (¢, m), i.e. satisfying (7), (8), with a finite Action, i.e.

such that /|U|2dc < 400.

We closely follow the construction used by the first author in [9]. As a matter of fact, in the special case u = 0,
there is essentially no change to be made. First, as in [9], we define, for t € [0,7], z,y,2 € D = R¢/Z1,
G(t,z,y,z) to be the concatenation of geodesic curves on the periodic box D, with constant speed, connecting
respectively z to y for 0 <t < T/2, y to z for T/2 < t < T and uniquely defined for almost all pairs (z,y) and
(y, z). Next, we introduce the Lebesgue measure-preserving flow X (¢, x), associated to u (¢, z) through

atX(tvm) = U(t,X(t,:L’))
X(0,z) = =

(In the particular case u = 0, we just have X (¢,2) = z.) Let co(z,a), cr(z,a) be two nonnegative measures
defined on D x A and satisfying

/co(m,da) - /CT(w,da) -1,
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/co(d:r,a) = /CT(da:,a) =1.

T(z,z,a) as a measure on D? x A, through the duality bracket

First, we define ¢
<7 f >:/ / f(z,z,a)co(dx, a)er(dz, da)
DxAJD
for all continuous functions f on D? x A. (Observe that

(sup) | f(z,z,a)co(dz,a)| < sup|f]
z,a D

since [ co(dz,a) = 1. Thus, [}, f(z,z,a)co(dx,a) defines a deg integrable function of (z,z) € D x A.) Now, we
define for every test function f,

<ef>= / F6X (4Gt 2y, 2)), )T (2, 2, a)dydt
[0,T1xD3x A

<m; f >=/ Be(X (t,G(t,2,y,2) f(t, X (t,G(t, 2,9, 2)), a)d™T (2, 2, a)dydt.
[0,T1xD3x A
This pair satisfies the continuity equation and the boundary conditions in the weak sense of (7). Let us just

check (8) in the special case when the total momentum w is zero, in which case X (¢t,z) = x. Then, we have for
all continuous function H(z), and for all 0 < ¢ < T/2,

/ H(@)m(t, d, da) = / G (t, 2.y, ) H(G(t, 2y, 2)) AT (2, 2, a)dy
D3x A

- / Gt 2y, ) H(G(t, 2.y, 2))co(de, a)er(dz, da)dy
D3xA

(by definition of ¢%7T),
= [ Ora ) HT5)e(ds,a)er(d, daydy
D3xA

(where, by definition of G, since for 0 < ¢t < T/2, G(t, z,y,z) = I'(¢,z,y) is a geodesic curve on D with constant
speed linking z at t =0 to y at t = T/2)

= [ ara )i, dody
D2xA
(by integrating out z € D and using that [ c¢r(dz,a) = 1),
= 8tI‘(t,a:,y)H(F(t,a:,y))da:dy
D2
(by integrating out a € A, since [ co(z,da) = 1)
= 0l (t,0,y —z)H(z + T'(¢,0,y — x))dzdy
D2

(since geodesics on the periodic cube D satisfy I'(¢,z,y) —x = T(¢,0,y — z))

D2
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(using the change of variable y — y — x for each fixed x and the translation invariance of the Lebesgue measure
on D)

D2
(using the change of variable z + I'(¢,0,y) — =z for each fixed y and again the translation invariance of the
Lebesgue measure on D)

:/Dc’)tf(t,o,y)dy/DH(a:)dxzo.

(by symmetry of geodesic curves on D with respect to reflections). The case T/2 < t < T can be treated
similarly, as well as the general case when w is not null. Finally, the Action can be immediately bounded by
d?/T in the case u = 0. (Indeed, the maximal speed for all geodesics is 1/(2d)/T.). In the general case, we find

d2
K(e,;m) < C(llullzz + 7 + [IVaX|[7=).

5 Duality, approximate Lagrange multipliers

In this section, we prove Proposition 3.1. We use a duality argument which implies that the infimum is
reached and that there exists a sequence (¢, H.) satisfying (11) and (12). We consider those inequalities as an
approximation of

1
O+ 5|Va+ H|* =0

with
v=V,p+H

which can be seen as the integral (in z) version of
Oiv+v-Vuv—0H+vAcurlH = 0.

Proof

Let us introduce two convex functions a and 3 defined on € = C(Q') x C(Q")? with values in ] — 00, 0] given
by
0if F+ 1@ <0
a(F;®) = (15)
oo elsewhere,

<GF>+<m;®> if 3(H,¢) € H st { F(’g’“)i

BF;®) = + Ve d(t, z,a) = (16)

oo elsewhere,

where (¢;m) is an arbitrary admisible pair and H = C(Q;R?) x C*10(Q").
Notice that the definition of 3 does not depend on the admissible pair (¢; 7).
Their dual functions [11] are defined by

1

a*(e,m) =sup < ; F >+ <m;® > with F + §|<I>|2 <0,
F,®

B*(e,m)=sup<c—¢GF >+ <m—m;® > with (F,®) € 4y,
F,o

F(t,z,a) + Owp(t,z,a) =0

— . d
where A5 = {(F,®) : @ = R x R such that 3 (H, ¢) € H st { ®(t.z.0) + H(t,z) + Vad(t,2,a) = 0 1.



6 PRELIMINARY ESTIMATES 14

Remark 5.1 Function * only takes values +0o and 0. In the later case, we have for every F and ® € Ay

<cF>=<cGF> and <m;® >=<m; P >

and then, for every (H,¢) € H.:
<m-m;H>=0and <c—¢dh¢ >+ <m-—m;V,¢ >=0, (17)

which exactly means that (¢, m) is admissible (i.e. satisfies (7) and (8)).

Thanks to the Fenchel-Rockafellar Theorem [11], we have
min{a*(¢c,m) + B*(¢,m); (¢c,m) € &', the dual space of £}
= sup{—a(=F; —®) — B(F; ®); (F; ®) € £}

This ensures that the infimum (that we already know to be finite) is achieved. (Indeed, we have an admissible
pair with finite Action, which means

a*(e,m) + B8*(e,m) = K(¢,m) < 00.)

Let us now reconstruct « and § starting from (¢,77), an optimal solution. We obtain
I(co,cr) = K(¢,m) = sup{—a(—F; —®) — B(F; ®); (F;®) € £}.

This equality implies that for every e > 0, there exist (H, ¢:) € H so that

1
6t¢5 + §|Vz¢5 + HE|2 S 0

and 1
5 <G [v|? ><< 0ipe >+ <m; Ve + He > +&2.
Moreover, thanks to (17), those inequalities are true for every optimal solution. Finally, there exist ¢. and H.
satisfying
06+ 5|Vad + HLI <0
such that for every optimal solution, we have

1 1
3 <Glv= (Voo + HoP" > + <T|0u¢- + 5|Vad + Ho)P| >< €. (18)

[\

6 Preliminary estimates

Let § and n be two small parameters and let us assume that 0 < 7 < % Let ((t) be a smooth function

compactly supported for 0 < ¢ < T. We choose n small enough so that ¢t — ¢ + n{(t) is a diffeomorphism from
[0,T] to [0,T]. We shall denote 7,(t) its inverse. Let  — w(z), be a smooth vector field and e*"(z) the flow

associated to w(z) defined by
dse5? (z) = w(e®™(z)) and % (z) = ,

we introduce, as in [9], the following measures

At z,a) =c(t+nl(t),z,a), v'(t,z,a) = vt +nl(t),z,a)(l +nl(t))
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that we define precisely by
f(t,z,a)dc" = / f(rp(t), 2, a)7, (t)de(t, v, a) and [ f(t,z,a)dm" = [ f(1,(t),z,a)dm(t,z,a).
Q' Q' Q' Q'
for every function f € C(Q'). Then we define the measures ("%, m™?) so that for every f € C(Q")

ft,z,a)de™ (t,x,a) = [ f(t,e% D (@), a)de”,
Q' Q'

and

/ f(t,x, a)dm”"s(t,x, a) = f(t,e‘sqt)w(a:), a)(0y +v"(t,x,a) - V) - e‘sqt)w(m)dc".
1A QI

Remark 6.1 If the pair (c"°,m"°%) is constructed from an admissible pair, we have

/cn’d(t,w,da) =1 as soon as w(x) is divergence free and the pair (c"°,m"°) satisfies (6).
Proposition 6.1 Let (¢,m) be an optimal solution, for any n and any 0, we have the following inequality:

H. - (dm™® — dm) + % (0 + 0" - V) OV (Ve + H.) 0 2COW2gcn

|
Q Q
(19)

1 1
<42 [ @ 407 Vo) Oupgen L / o |2de.
2 2 Jor

|
Q!

Proof
From the relation (7) between the measures ¢ and m, we have

Orp-(dc™ —dc) = — [ Vio.-(dm™ —dm)
Q' Q'

because since ¢ is compactly supported in time, the boundary terms in time of (7) vanish. Then, we obtain

Ope (dc™® — dc) - / (8 + 0" - V) . ¢, 0w gen 4 / v- Vyoede

/

Qr

!

—/ (8 + 0" - V)2 Bv (V¢ + H.) 0 2D den +/ v (Vaoe + H.)dc

+ [ H.-(dm"° —dm).
QI

After a systematic transformation of the products, we obtain
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1

Bide(dc™ —de) = == [ (8 + v V,)ed B 2gen
QI 2 QI
1
+5 (8 + 0" - V,)edSO% _ (V0. + H.) 0 D2 qen
QI

1 1
_5/ |Vac¢s + H8|2dc7776 - 5/ |vm¢s + Hs - U|2dc
Q' Q'

1 1
+—/ |Vepe + H|*dc + —/ v’de+ [ H. - (dm"™° —dm).
2 Q/ 2 ! Q/

Hence, we have the following equality

H. - (dm™° — dm) + 1

o 2 /o (0 + 07 - V)2 — (V. + H.) 0 €2 dcn

1
(8 + v - V,)edSOw 2gen 4 = / lv|*dec
2 Q’ 2 Q’

1 1
= / (Orp- + = |V + H.|*)(dc™® —de) + = / |V + H. — v|?de.
QI 2 2 QI

Here, we use the properties (3.1) of H. and ¢. to estimate the right-hand side term by 2 noticing that
1
[ @+ 51920 + e <0
Q!

and
1 1
—/ (8t¢s+—|vx¢g+Hg|2)dc+—/ Vade + H. — vde < £2.
Q’ 2 2 Q’

So we obtain inequality (6.1).
In the following, we first make a restrictive assumption on the total momentum u. We assume that

u(t,z) = %CL(t)U(Cu(t),a:) with U(t,z) € C*°([0,T] x D) and ¢,(t) € C°(]0,T)) (20)

Remark 6.2 To obtain the complete result, we have to take uw = 0, so the reader principally interested in the
final result can consider only this case.

Assumption (20) is in fact a sufficient assumption so that the flow associated to u, X, satisfies X (T,x) =
X (0,z) = z. Moreover, the Cauchy-Lipschitz theorem ensures that this flow can be reversed.

In this framework, we use a more general formulation of (6.1). Indeed, the same proof as the one presented
above leads to the following proposition:

Proposition 6.2 For any transformation M (t,x) that satisfies

M(0,z) =z and M(T,z) = =,
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we have
/ H.(t,M(t,x))(0; M (t, ) + u(t,z) - VM (t,z))dtdr — /Hg(t,a:)u(t,a:)dtdw
Q
1 — —
+§ |0 +v-V)M(t,x) — (V. + H.)(t, M(t,x),a)|*dc
QI
2 1 7 2 1 2
<et+4 - |(Or +v- V)M (t,x)|"dec — = [v|*de.
2 Q! 2 Qf
Proof

To obtain (21), it is enough to see that

Os ¢ (t, M (t,x),a)dc — O (t,x,a)de = —/ (0 +v -V )M(t,z) - Vuo.(M(t,z))de

Q' Q'
+/ v-Vgpde

which comes from the integrated continuity equation (7). Indeed, we have

00(0- (6Tt a)de + [0 V(0.6 (t,2), )de

Qr

- /D (6 (T, TE(T, 2), a)der (z, a) — 6.(0, TL(0, 2), a))deo(z, a)

= O(¢e(t, z,a))de + / v-V(de(t,z,a))de
o ,

since M (T, x) = . The continuation of the proof is similar to the previous case.

We will also use the following proposition

Proposition 6.3 For every transformation M(l,x) that salisfy

M(0,z) =2 and M(T,z) =z,

we have

/HE(t,M(t,a:))atM(t,x)dtdm—/Hg(t,a:)u(t,a:)dtdw < 1+ C(|0eM |32 + ||[VM][3 ).

Proof
Let M be the function satisfying M (t,x) = M(t, X (t,z)), we notice that
/Hg(t, M(t,z))0: M (t,z)dtdx = / H.(t,M(t,2))(0:M(t,z) +u - VM(t,x))dtdx
Q

since X is Lebesgue measure preserving. Since X (0,z) = X (T, z) = z, we have

M(0,z) =z and M(T,z) = .

17

(22)

(23)
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and then, thanks to (21), we obtain

/HE(t,M(t,a:))(?tM(t,a:)dtdm—/Hg(t,a:)u(t,a:)dtdm < a2+% (00 + v - Vo) T (2, ) [2de
QI

1
—= / |v|*dc
2 Q’

L+ C(10 M| + IV M][L)-

IN

Indeed, since the Jacobian of X is equal to 1, we have

/|8tM(t,X_1(t,x))|2dtdm :/|8tM(t,x)|2dtdm.

Remark 6.3 Let w be the vector field satisfying
atM(t> 1‘) = w(t) M(tv :L‘))
M(,z) =z,

inequality (23) becomes

/Hg(t,M(t,w))w(t,M(t,w))dtdw - /Hs(t,w)u(t,w)dtdw <1+ C(||a:M][72 +[[VM]| )

or

/Hg(t,:v)(w(t,a:)a(t,a:) —u(t,z))dtde < C(1+ ||0:M||52 + ||VM|3) (24)

where o is the Jacobian associated to M which is linked to w through
0o + div(ow) =0 and 0(0,z) = 1. (25)

7 First bounds for H,

In this section, we show that H. is bounded in a suitable distribution space, up to a time independent gradient,
i.e. that the time derivative and the curl of H. are bounded. The main difficulty of our analysis is that in
order to derive the optimality equations we must be able to pass to the limit in expressions such as < 0;H.; g >
and < curlH.;g > not only for compactly supported functions g(t,z) of 0 < t < T, & € D, with unlimited
regularity, but also for those with limited regularity, namely with a finite norm in G,,, = H"™°([0,T] x D) for
some integer mg large enough, which means bounded derivatives in L? for high order derivatives in = but only
first order derivatives in .

7.1 An estimate for 0,H,

In this part, we use assumption (20) on the total momentum wu.
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First case: test functions that are tensor products

We show the following proposition:

19

Proposition 7.1 There exist C, ro > 0 and an integer mo so that for every smooth vector field a(t,x) =

< ro implies

mg —

C(t)A(x) with A € C*(D) and ¢ € C(]0,T)), |lalla

/Hg(t,x)ata(t,a:)dtdm <C.

Proof of Proposition 7.1

The main idea of the proof consists in finding M so that
/Hg(t,x)ata(t,a:) = /Hg(t,M(t,x))atM(t,x)dtdm
and then using (23). In order to use (23), in the case when w is not null, we first need a bound for
| /Hs(t,a:)u(t,:r)dtdaﬂ

and use (24).

We note that assumption (20) ensures the existence of M,, satisfying (22) so that
/Hs(t,Mu(t,x))atMu(t,a:)dtdm = 2/H5(t,a:)u(t,:r)dtda:
Indeed, let us define M, by } R R
O My (t,x) = U(t, My(t,x)) and M, (0,z) = x,

we have (27) with M, (¢, 2) = M, ((.(t), z) which satisfies M, (T,z) = M,(0,z) = z. Indeed, we have

/ HL (8, Mo (t,2))0 My (t,2)dtde = / He(t, 1, (Gu(8), 2)C (DU (G (), oy (Cu(8), 2)) it

/ H(t, 2)CL (U (G (1), 2)dtdz

2 / H_(t,z)u(t, z)dtdz.

(26)

Remark 7.1 Let & be the Jacobian of M,, we know that 016 + div(6U) = 0. Because u is divergence free, U

is also divergence free and therefore & = 1, which means that M, is Lebesque measure-preserving.

Using (23), we obtain
/Hg(t,w)u(t,w)dtda: <C

and the estimate
- /Hg(t,x)u(t,a:)dtdm <C
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comes directly from (23) in the special case M (t,z) = z.

Now, if there is M satisfying (26), by using (23) we deduce
/Hs(t,x)ata(t,a:)dtdm = /Hg(t,M(t,x))atM(t,x)dtdm < C(L+||0:M|32 +|IVM)3)
Let us now find M so that
/Hs(t,x)ata(t,:r) = /Hg(t,M(t,:r))c’)tM(t,a:)dtda:.

To be sure that M satisfies (22), we look for it in the following way

M(t,z) = M(((t), z) where ¢ € C(]0,T]).
Let S = [so, s1] the range of {(t) for 0 <t < T. We set for s € S

a(s,z) =1—sV-A(x)

~ Az
W(s,x) = ﬁ.fm);

0 M(s,z) = (s, M(s,x)), M(0,z)=z.

By choosing 9 > 0 small enough, we get

1
sup |sV-A(z)| = sup (V- A(2)] = ||V - allze < 5
seS, zeD t€l0,T], z€D

and, then, w is well defined and smooth. To guarantee that M satisfies (22), we set
M(t,x) = M(((t), )

From these definitions, we get
06+ V-(cw)=0

and

/ H.(t, M(t, 2))0 M (t, 2)dtds = / H. ()¢ ()5 (C(1), 2)5 (C(t), z)dtdz = / H.(t,2)da(t, z)dtds.

To conclude the proof, it remains to estimate (||0;M|[3. + ||[VM]|3) in terms of the norm of a in G =
H'™([0,T] x D).

Let us compute

t/@M@wWﬁM /C@ﬂm«mMummMMx

= [ Carlac®. 0P, m)dus
which becomes, after replacing @ and & by their explicit values,

|A(z)?

v - () A@)

/|8tM(t,m)|2dtdm = /C’(t)21 -
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Thus,
/|8tM(t,:n)|2dtdm < /2(’(t)2|A(m)|2dtdm — 2/|3sal %

Similary, we deduce from

OnM(t, ) = ¢'(B)(C(t), M(t,))

that
0:0; Mi(t, x) = (' (t)0; My (t, )0 (C(t), M (¢, 2)),

and we know that M (0,z) = x. Thus

T
VM (t,2)] < C exp / I ONIVHES), (0 ds).

Let us estimate the right-hand side of this inequality. We have

9 4i(z)
1—C(O)V - A(z)

Ai(@)9;(V - A(a)

05w; (¢(t), ) = (1-¢()V - A(z))?

+ (1)

If 79 > 0 is chosen small enough, by assumption, we get

ISV - A(z)] < |V - al[L= <

DN | =

and
ICOV(V - A@))] < |[Cl[L=[[V(V - A)|| = [[V(V - a)||z~ < 1.

Thus
IVw(C(t),2)] < C(|A(z)| + [VA(z))).

It follows that .
|VM(t, z)| < CeXP(C/ I (s)|ds(||All L= + [[VA|L=)).
0

< Cexp(Cllalle,,,)

for mg large enough (more precisely for mg — d/2 > 1), which completes the proof.

Second case : general test functions

Proposition 7.2 There exist a constant C and an integer mo (that do not depend on €) so that for every
smooth vector field a(t,x) € C°(]0,T[x D),

/Hg(t,x)ata(t,a:)dtdm < C||a||Gm0.

This proposition immediately follows from :

Lemma 7.3 Let T.(t,z) be a familly of distributions for x € D and t €]0,T], satisfying, for some constant C
and some integer my,

|<To¢>1<C > 0j0°¢]l (28)

1<1,|a|<mg

for all tensor products ¢(t,z) = ¢o(t)p1(x). Then (28) remains true for all test functions provided myg is taken
larger.
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Proof

The proof of this lemma can be made using the Fourier transform. Let us denote < k >= /1 + |k|2. Let ¢ be
a test function belonging to C2°(]0, T[x D), we can write

$(t,x) = > o(t,k)e ™.

kezZd

Then . '
|<To6>| < D |<T., ot k)™ > |
kezZd

Cy Y 3ot ke ™) 2

keZa1<1,|a|<mg

IN

and using (28), we have

|<To90>] < C Z Z <k >™ |0h(t, k)| p2(o,m)

kezd1<1
S CZ( Z <k >2mo+r ||8£(£(t7k)||%2([07T]) Z <k >—7‘) where r > d
<1\ kezd kezd
<c ¥ J / 10109 (¢, 2) > dtdt

1<1, | <mo+§

thanks to the Parseval equality.

7.2 An estimate for curlH,

In this section, we assume that the dimension d is 3 and the velocity u is equal to zero.

First case: test functions that are tensor product

We show the following proposition

Proposition 7.4 There exist a constant C and an integer mg such that, for every test function

A(t,x) = a1(t, z1)a2(t, x2)as(t, x3) where a;(t,z;) = ((t);(x;), ¥i € C®°(T) and ¢ € C(]0,T[) satisfying
1

I1¢]|ne < 1 and ||04)s]|r~ < 1 fori=1,2,3, 1=0,..,mg+ 1, so that for every 1 < k < 3,

mo
/ curlH (t,2) A(t, 2)dtdz < C(1+ (305 [[0udtas|22)%).
=1

i

Remark 7.2 The following analysis is again complicated because we need an estimate where a is involved only
through its H™ ([0, T] x D) norm with only one time derivative. An estimate in D' ()0, T[x D) would be much
easier to obtain.
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First, we prove the following lemma:

Lemma 7.5 For every tensor product
A(t,x) = a1 (t, x1)az(t, v2)as(t, x3)
1
with a; € C°°([0,T] x [0,1]) satisfying ||0;a;||r= < 7 there exists (Wi (¢, 1), Wa(t, x2), W5(t,x3)) belonging to
C>=([0,T] x [0,1])
so that

ai(t,xi + Wl(t,l‘l)) = Wi(t,l‘i) and ||8ZWZ||LOO < —. (29)

W =

Moreover
1- if the functions a; are 1-periodic with respect to x;, then the functions W; are also 1-periodic;

2- if the functions a; are of form a;(t,x) = a;(((t), z;) with ¢ that does not depend on i and a;(s,z;) = syi(z;),
then each W; is equal to W;(t, z;) = W;({(t), z;) where each W is constructed from a; following (29) ;

3- for every f(t,z), we have
1 1 1
/f(t,l‘)A(t,l‘)dtdlL’ = / d9/ d(f/ dT/f(t, ry + 9W1;1‘2 + UW2;1’3 + TW3)W1W2W3d1‘dt
0 0 0

Proof of Lemma 7.5

For every f, we want to write
/ F(t 2) A(t, )dids
in the following way

I= /f(t;l“l + OW1; 22 + oWa; a3 + 7W3 )W WeWsdzdtdfdodr

Let us perform the change of variable 8 — z; + 6W;(t,x;) = y; for z; fixed. The Jacobian is then dy; =
Wi(t,l‘i)da.

Then,

3 zi+Wi(t,xi)

r - [d1/ F(t;y)dy) e

i=1Y Yi=Ti

//f(t;y) ﬁ {/zieR(Y(yi — ;) = Y(yi — (wi + Wi(tawi))))dxi} dydt,

where Y denotes the Heaviside function. Thus, to obtain
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/ / £t w)ar (b )as (b, yo)as (£, ys)didy

we just have to invert, for every ¢, the relation

ai(t,yi) = /(Y(yi — ;) = Y(yi — (z; + Wi(t, z;)))d;. (30)

For the sake of simplicity, we will omit the letter i in the following argument. If we assume a priori ||0, W||r~ < 1,
we just have to find W so that

a(t,z + W(t,z)) = W(t,z). (31)
Indeed, if W satisfies (30), we have
a(t,z+W(t,z)) = /(Y(z +W(t,z)—z) =Y ((z+W(t,z) —x — W(t,z))))dz.
Since  + W (t, z) is strictly increasing in z, Y (z + W (t,z) —z — W(t,z))) = Y (2 — z) and we get

alt, 2 + W(t,2)) = /(Y(z FW(t2) — ) = V(2 — )z = W(t, 2).

Equation (31) is just a fixed point equation where ¢ is a parameter. We get a unique solution as soon as
|0za(t, z)] < 1. To get a more precise information, we differentiate (31) in z and get

Oga(t,z + W(t,z))

W (E2) = T altz + Wt )

which shows that ||0,W ||~ < 1/3 follows from ||0,a||r~ < 1/4. This concludes the proof of Lemma 7.5.

Proof of Proposition 7.4

To estimate B. = —curlH., we use
B.(t,x) = —curlv. (t,z,a),

where
Ve = V¢E + H-..

Let us consider the k—th component of H (k =1,2,3) and set

I= /ng(t,m)a(t,m)dtdw.

Thanks to lemma 7.5, we have

I = //Bsk(t;wl + OWis e + oWa; x3 + 7W3) Wi (t, 21 ) Wa(t, x2) W3 (t, x3)dedfdodr,
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To simplify notations, we deal with the case k = 1. Since

I= //(83115 — 0905 (t; 1 + OW ;20 + oWas w3 + TW35 @) Wi (8, 1) Wa (t, 2) W3 (t, 23)dedfdodr,

we obtain, by using the mean value theorem
I = //Ug(t;xl + OWy; z9 + o Wa; 3 + Wi a) Wi (t, 1) Wa(t, x2)dedfdo
— //vg(t;wl + OW1s e + oWa; x3; )Wy (¢, x1)Wa(t, ) dedfdo
- //v§(t;a:1 + OWy; 20 + Wa(t, x2); 23 + W35 )Wy (t, 1) W3 (t, 23)dedfdr

+ //vg(t;wl + OW1;mo; w3 + TWs3;a) Wi (t, 1) W3 (¢, x3)dedfdr.

Then, by using Cauchy-Schwarz and by introducing v, we obtain
I < C(||W1||2Loo||W2||%oo[// |v5(t; 21 + OW1; 20 + oWo; 23 + Wasa) — va(t, z,a)|*dedfdo
+//|v§(t;a:1 + OW1; 0 + 0Wa; 235 0) — va(t, x,a)|*dedfdo]
+||W1||%oo||W3||2Loo[/ / |05 (t; o1 + OW ;20 + Was a3 + TW3; a) — v3(t, x, a)|*dedddr

+ / / |05 (t; o1 + OW; 203 23 + TW3; a) — vs(t, x, a)|*dedfdr]).

To complete the proof of Proposition 7.4 it is now enough to show the following lemma:

Lemma 7.6 Let M be of form M(t,x) = M(((t),z) = = + W(((t),z) with W; defined as in Lemma 7.5.
<

Assume fori=1,2,3, 1 <mgo+1, ||0\d||r Then, we have the following estimate

1
1

1 i
§/Ive(t,M(t,x))—v(t,m)lzdc < C(1+ZZII@3§G¢|I%2)

i I=1

Remark 7.3 Subsequently, we omit parameters 8, T and o to simplify notations.

Proof of Lemma 7.6

For A(t,z) =[] a;(t, z;) where a;(t,x;) = ((t)1;(z;), we have to estimate

%/|v5(t,M(t,m)) oty a)[2de (32)
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where v.(t,z,a) = V. (t,x,a) + H-(t,x) and M is defined by

M(t,x) = M(((t),2) =2+ W(t,z) =2+ W(((t),2) , with Wi(s, z;) = ai(s, ; + Wi(t, z:)),
with |0;W; (¢, z;)| < %

To estimate (32), we use
/|v6 (t, M(t,z)) — v(t,z,a)|*dc /| O +v - Vi) M(t,x) — v (t, M(t,z))|*dc

+ / |(at +v- VI)(t> M(t,l’)) - ’U(tama a)|2dc
and observe that

% / |(0; +v-V)M(t,z) —v(t,z,a)*dec < 0(/ |0:(M (t,x))|?dtdz + ||V M — Id||3).
Let us consider
%/Kat F o V)Mt ) — v (t, M(t,2)|de.
Thanks to Proposition 6.2, we obtain, as u = 0,
/ H.(t, M(t, )0 (M (t, 2))dtds
+% / |8 + v - Vo) M(t, &) — ve(t, M(t,z))|>de (33)

<C(1+ / |0: M (t,z)[*dtdx + ||V M||3. ).

Since |0;W;(t,z;)| < =, M is invertible and we can define w and o so that

c.ol»—n

0eM (t,7) = (M (((1), ) = ¢'()w(C(t), M(C(t), )

and Oio + V - (ow) = 0 with o(t =0,z) = 1.

We introduce

We have



7 FIRST BOUNDS FOR H.

- / H.(t, M(t, )0, M(t, 2)dtdz

= - [ Bt )¢ uc(e), ) 6(0) ) drde
_ / H.(t,2)0,b(t, 2)dtdz.
The result of Part 7.1 implies that

_ /Hg(t,a:)atb(t,a:)dtdm < C|lbllc..,

for some integer my.

Then we obtain
1
§/|(8t+v~vm)M(t,a:)—vs(t,M(t,m))|2dc < C(1+/|8tM(t,x)|2+||VM||%DO)

_ / H. (1, 2)0,b(t, z)dtdx

IN

cu+ [Pt + VM~ + blle,)

To complete the Proof of 7.6, it remains to estimate the right-hand side by some norms of the a;.
Comparison of the norms of M and the a;

The quantities involved in the estimates are the following
/|8t(M(t,x))|2dtda: and ||V M ||

First, since M (t,z) = z + W (t,z) = & + W(((t), z), the inequality

—~

[|10:Wi||L~ < = implies that ||[VM]||L~ < C.

Wl =

Moreover, to estimate / |0y M (t, x)|?dtdz, we use the implicit definition (31) which can also be written as
M;(t,z;) = x; + a;(t, Mi(t, x;)).
We obtain
OcM;(t,x;) = Orai(t, Mi(t,x;)) + O (M;(t, z:))0ia;(t, M;i(t, x;)).

Since ||0;ai||r= <, we get

S0 Mt z)? < C S [Beailt, M(t, ;)

27
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and

/|8tM(t,x)|2dtdx < C’Z/|8tai(t,wi)|2da:i

(using the change of variable x; — M;(t, z;) that just modifies C'.)
Comparison of the norms of b and the a;

Let us denote ||| - ||| the L*([0,T]; H™ (D)) norm where myq is fixed large enough. We want to show that
[110:b]|| < C|||O¢al||- Let us compare the norms of b and the a;. We have b(t, z) = b({(t), ) where

b(s,x) = / w(B, z)o(6,x)db.
0
Here, o solves 0,0 + V - (cw) = 0, with o(t = 0,z) = 1, and w is implicitely defined by
s M (s, ) = w(s, M(s,x)).
Let us recall that M;(s,z) = x; + Wi(s, ;) is linked to @;(s,x) = s;(x;) through
Wils, x:) = @i(wi + Wi(s, 1))

Thus 3 } .
OlWi(s, i) = O'Wi(s, 2:)8sa;(s, v + Wi(s,x;)) + rest (34)

where the rest involves only derivatives of W of order lower or equal to (I — 1) and derivatives of @; of order
lower or equal to [.

So, the derivatives in z; of W; are controlled by those of a; and we get :

Lemma 7.7 Assume .

Then, & — M(t,z) is uniformly smoothly invertible and for any a satisfying |a| < mo, for any 1 < mg

|0iWil| L < C, (35)
10} M| < C, (36)

. 1
10;M |z < C, 0% ][1 < C, |0~ lz < C.

Using the lemma, we get

> /|a Orb*dtdr < C > /g’Z’ )0 w(C(t), x)|? dtdz.

|| <mo [<mo

In the same way, since w(t,z) = ;M (t, M~ (t,z)), we obtain by differentiating this relation and using the

bounds on the derivatives of M ~! by their L> norm,
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for every | < mg, [0'w(t,z)|> < C Y |070,M(t, M~ (t,x))|>.
J<I

And then
[ e, opd <y [ oo,
Jj<i
since || 1|z~ < C.

Thus, we have |||0:b]|| < C|||0:M|||- Next, since M (t,z) = = + a(t, M (t,x)) we obtain

[0 2]

110: (a(t, M (%, )|

Clloealll + [l|0zalt, M)B M)

A

(using Leibnitz formula and lemma 7.7). Finally, using the smallness of the ||0!d;||L~ we get

19 M ]| < C1[|Oeall
and therefore |||0;b]|| is controlled by [||0:al||. This concludes the proof of Proposition 7.4.
Second case: general test functions

Proposition 7.8 There are constants C, ro > 0 and an integer my such that for any test function h(t,z)
compactly supported in 0 < t <T with a norm in Gp,, = H-™([0,T] x (D)) smaller than ro > 0,

| / B.(t, 2)h(t, z)dtdz| < C.

Proof

As in the proof for the time derivative, we write the test function as a Fourier series. We obtain

/Bg(t;w)h(t,m)dtda: = Z /Bg(t;:U)il(t,k)e%”k'zdtdw.

kez3
We have

/ Bt oh(to)dids = Y / Bg(t;x)ﬁkk>263(t)ﬁ(t,k)+63(t)L(k))eQi“k'””dtdm

kezZ3

=S / Bo(t: 1) ——— 63 (1) L(k)e2 ™% dtd,

<k >2
keZ3

where < k >= /1 + |[k]?, 0 € C°(]0,T;[0,1]) is chosen so that 6(t) = 1 on the support of h and

Lk)y=C2< k>N 4i2<k>"N)
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with N to be chosen later. Both € and L(k) have been introduced because we need to extract a cubic root
without producing spurious singularities.

To estimate this expression, we just have to consider two typical terms

03( )(< k >2 Re(h(t, k) + 2 < k > N) cos(2rky 1) cos(2mkax) cos(2mkszs ) dida

Il—Z/ t:r

kezZ3

and

I, = Z /2B t;x) k>N 03(t) cos(2mky 1) cos(2mkaxs) cos(2mks w3 ) dtd.
keZ?

Let us first consider I.

12—22/ t:r NHa]t:rJ, )dtdx

kezZ3

with a;(t, x;, kj) = 0(t) cos(2mk;x;). Using Proposition 7.4, we easily get

< k >mo
L| < c——_<k>N<cC
12| k§3 <k >2 > s

for N large enough (the constant depending only on the support of h through the choice of ).

Let us next consider I;.

11:Z/Bta: 2Ha]tw], )dtdx

kez?
with
(t zj, k ) C(t)i(xs)

where

C(t) =< k>™6(t) \3/< k>2Re(h(t, k) +2 <k >N, o(z;) =<k >"™ cos(2mk;x;),

where m will be chosen later. Let us first get a pointwise decay estimate on ﬁ(t, k). We have

<k >™ suplh(t k)| < (/| <k >™ Gh(t, k)[2dt)}
t

oy //|6”‘6t t,2)Pdwdt)® <

\a|<m1

IN

by assumption. Thus sup |ﬁ(t, k)| << k >7™. So, we can choose my, N, m and rq in such a way that {(t) and
t
the v;(z;) satisfy the assumption of Proposition 7.4 and we finally get
L] < C | <k>™ 0h(t,k)ldt,
kez3

which can be bounded in terms of ||h||g,,, -
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8 Approximate estimates for the velocity gradients

We prove inequality (13) which formally means that the L?(Q’, dc) norm of the gradient in space of v is bounded.
Thanks to (11) we just have to show

| N(Fae 1 o 5O e < O 48 4 5x(E))
QI
for every smooth divergence free vector field w(z), taking ¢ € C00(]0,T7; [0, 1]) so that ((t) =1 for 7 < t <
T-—r.
Since the transformations e¢()® can be written
e = g 4 §C(tyw(x) + 0%g(t, @)
with ¢ = gs smooth and uniformly bounded in d, we have
(0 + v - V,)ed O _y(t, z,a)2de = O(5?)
QI

since

L@ Tl vt matie = [ ¢t +829i0(7) + 0000, 0) - Toie)

+6%0(t, z,a) - Vg(t,z)|*de.
with v € L?(Q’, dc). Now, it remains to estimate
1

5 (8t +v- vm)€6C(t)w - (vm¢s + HE) o e&((t)w|2dc_
Q’

For that purpose, we consider inequality (19) when n = 0, and we expand its right-hand side term in powers of

0 :

% o (0 + v - V)2 de — % /Q, lu(t,z,a)|*dc
= % (6¢' (t)w (@) + v(t,z,a) + 6(t)v(t, z,a) - Vw(z)) + 6%0eg(t, x) + 6%v(t, 2, a) - Vg(t, z)[*de
o
1
—3 o lo(t, x,a)*de
1 1
=5 [ PCOPw@P+3 [ otz
Q' Q'
+% o 52(C(t))2|v(t,x, a) . V’w(x)|2 + o 52('(t)§(t)w(w) . (’U(t,x, a) . Vw(a:))

+ (SC’(t)U)(l’) ’ U(t,l‘,a) + (SC(t)’U(t,:L’, a) ) (’U(tvmv a) : Vw(m))dc
Q' Q'

+0(6%) — % lv(t, z,a)|*de.
QI
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The terms of order 0 can be simplified and those involving g are bounded by C(§%). Moreover

52((’(t))QIW(m)I2+/ 3¢ (B C(tw - (v(t, @,a) - V() + | 82¢(1)*u(t, z,0)]* |V ()]
@ @ @

=/, (¢ () |w(@)* + /QI 3¢ (¢ (tw(z) - (u(t, ) - Vw(z)) + o 32 ()?[o(t, @, a)[* |V (@)]?
= 0(6%)
since the bound on energy enables us to estimate [, [v[*(t, 2, a)|Vw(z)[*de.

We have shown that

1 (0 + v - V,)edBw|2de — 1 [v|?de = AS 4+ O(8?),
2 2
Q Q
with
A= [ ([(Ow@)-v(t,z,a0) + (vt z,a) - (v(t,z,a) - Vw(z)))de.
Qf
Let us expand H. - (dm’ — dm) in the same way.
QI
H, - (dm® —dm) = H.o e‘SC(t)w[(at +uv- Vx)eéc(t)w]dc — / H, - vde.
Qf QI ’

Since w is divergence free, the transformation e?¢(Y* is Lebesgue measure-preserving and then we have (denoting
by H.,; the it" component of H.)

o H.. (dm‘s —dm) = /, H. i(t,z)[6¢ ()w;i(z — 5¢()w()) + vi(t,z — 6((t)w(z),a)

+0¢(t)v;(t, 2 — 6C(H)w(x), a)djwi(x — 6¢(t)w(x))
+620,gi(t, & — 0 (Hw(x)) + 8%v;(t,x — ((Hw(x), a)d; gi(t, & — 6¢(Hw(w))]de
—/IH&i(t,a:)vi(t,a:,a)dc.

Integrating with respect to a, we obtain

H. - (dm’ —dm) = / H, i(t,2)[6¢ (Dw;i(z — 6¢(t)w(z)) + u;i(t,x — 5 (t)w(z)
Q' Q

+ 0C(B)uj(t,x — 6C(Hw(x))djwi(x — ¢ (t)w())

+ 80gi(t,x — 0((t)w(x)) + 8%u;(t, @ — O((t)w(2))d;9i(t, © — 8¢ (H)w(x))]dt dw

/Hgyi(t,a:)ui(t,a:)dtdm.
Q

The following equalities

w;(z — 6¢(t)w(z)) = wi(z) + dg}(t, x)

wi(t,x — 8C(t)w(x)) = u;i(t, ©) — 6C(t)w;(x)0ju;(t, ) + 827 (t, )
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where g' = g} and g? = g3 are smooth and uniformly bounded in §, ensure

H.-(dm’ —dm) = 5/ He (¢ ()wi(w) — C(t)w; (2)0jui(t, @) + ((t)u; (¢, 2)0jwi(w)]dt dw
Q Q

+/ H. ;8%g3(t,x)
Q
where g® = g3 is smooth and uniformly bounded in §. Since H; is bounded in D'(Q), we can write

H. (dm’ —dm) = A5+ 0(6?)
Qf
with
Ac = 5/ Hi[¢'(Owi(x) — ((H)w; (x)05u;(t, ) + ((t)u;(t, 2)0jw;(z)]dt de.
Q
The sequence A, has a limit when & — 0 (up to a subsequence) since H¢ is bounded in D'(Q). Then, equation

(19) becomes
SA. — 6A < 2+ 0(6?),

where

A= Q,(C’(t)w(w) ~o(tx,a) + (Bt z,a) - (v(t,2,a) - Vw(z)))de.

When ¢ — 0, and then 6 — 0, we obtain
liH(l) A, = A
e—

Then, introducing x (&) = max(A. — A;¢) =280, we have

| Q’(C'(t)wi(a:)vi(t,m,a) + ((t)vi(t, x, a)vj(t, z, a)0jw;(x))de

_ / Hei(t, 2)C (Hywi () — / C(ywi (x)uy (t, 2) (O H.; — 0; H..)dt d| < x(e).
Q
This estimate will be useful later and can be written

- / (C(Byw(e) - Byult, z) + C(tyw(x)div / (0(t,,a) @ v(t, 2, a))clt, v, da))dtde

Q
+ o OcH (t,x) - ((t)w(z) — (()w(z) - (u(t,z) A curlH. (¢, x))dt dx| < x(g).

Remark 8.1 Ase — 0, we see that
Oru + div/(v ®@v)e(t,z,da) — O H + u A curlH

is a gradient in the sense that it is orthogonal to the space of all divergence free vector fields. So we obtain the
optimalily equation integrated in a and projected onto the space of all divergence free vector fields.

We use inequality
(Ae = A) > —x(¢)



9 A FIRST SET OF APPROXIMATE OPTIMALITY EQUATIONS 34

to express (19) as

% 1(8s + v - V,)eX D — (V6. + H.) 0 e* D 2de — 6x(e) + O(5?)
Q!
(38)

1
<5 [ 1@ +v V. )e® O — (V. ¢, + H.) 0 D% 2de + §(A. — A) + O(6%) < €2 + 0(8?).
Q!

If we choose ( € C¢°(]0,T7; [0,1]) so that

we can bound

/ |(at +uv- vx)eéw - (Vx¢e + He) ° 66w|2dc

by
/ (0 +v-V,)eOY (V6. + H.) 0 D)2 dc

and (38) leads to (13).

9 A first set of approximate optimality equations

Here, we show Proposition 3.4 starting from
1 1 N 1 N g2
g [8t¢5 + §|(vﬂv¢6 + HE)| (t,CC + 6(‘]’ (],) - at¢6 - §|(v$¢8 + HE)| (t,.’lf, a)]f(t,.’lf, a’)dc S F:
QI

which comes from Proposition 3.1. In this expression, f(t,z,a) is a continuous function with values in [0, 1],
compactly supported in 0 < + < T with continuous partial derivatives and w is a fixed vector in R?.

We split the left-hand side into two integral terms :

1

L=<
! 5Q,[

Ot de (t,x + dw, a) — Opd: (t, x, a)] f (¢, z,a)de

and
1

L=
272 /o

1(Vage + Ho)(t, @ + 0w, a)* = [(Vade + He)(t, 2, 0) " (¢, 2, a)de.

Let us study the first integral term. Thanks to the mean value theorem, it becomes

1
Il = /, A [atVz(bE(t;x + U(So.),a) . W]f(t,l‘,a)dcdg,
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Then, equation (6) enables us to write

1
L = —/ / Ocf(t,x,a)V,d:(t, + odw, a) - wdedo
Q" Jo
1
[ @ltn,0) T ft,2,0) Vb (3 + 000,0) - wiodo
+Jo

1
—/ / v(t,x,a) - Ve[Vaede(t,x + 00w, a) - w]f(t, z,a)dedo.
Jo

Introducing H. and v. = V¢, + H. , we obtain

1
L = —/ / Ocf(t,x,a) (Ve + Ho)(t,x + 0dw, a) - wdedo
Q' 70

—/ /1(v(t,a},a) -Vaof(t,z,0))(Vade + He)(t, x + 0dw, a) - wdedo
+Jo

1

_g U(t,l‘,a) ) [(VIQSG + Hg)(t,l‘ + 5&), a) - (quﬁ& + Hﬁ)(tvmv a)]f(t,a:, a)dc
Q'

1
+/ / Ocf(t,x,a)H.(t,z + odw) - wdedo
Q" Jo
1
+/ / (v(t,z,a) -V f(t,z,a))H:(t,x + ocdw) - wdedo
Jo

+/ /1 v(t,x,a) - [w- Vi H.(t,z + odw)|f (¢, z,a)dedo
1 Jo

= L+B+0B+0+1+ 18

Since we notice that

I = /'/0 v(t,z,a) - [(w- Vi) H:(t,z + odw)]f(t, z,a)dcdo

/'/0 (v(t,z,a) - V)[He(t, x + odw) - w]f(t, z,a)dcdo

1
+/ / [v(t,z,a) A curlH.(t, z + odw)] - wf(t, x, a)dcdo
rJo

we obtain )
n+nr+1 = / / —OH. (t,x + odw) - wf(t, x,a)dcdo
Q70

1
+/ / [v(t,z,a) A curlH.(t,z + odw)] - wf(t, x,a)dcdo.
+Jo
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So using (13), it comes
n+rn = - O f(t,z,a)v(t, x,a) - wde —/ [v(t,z,a) - V. f(t,z,a)v(t,z,a)] - wde
Q’ ’
+05(\/02 4+ 0x(e) +€2) = Of(0 + x(e) + )

(where Oy means O with constants involving f) and then

L > - Ocf(t,x,a)v(t,x,a) - wde —/ [v(t,x,a) Vi f(t,z,a)v(t,z,a)] - wde
QI !

1

-5 v(t,z,a) - [(Vade + Ho)(t, x + 0w, a) — (Vyde + He)(t,x,a)]f(t, 2, a)dc
QI

1
/ / —OH.(t,x + odw) - wf(t, x,a)dcdo
Q" J0

1
+/ / [v(t,z,a) AcurlH (t,z + odw)] - wf(t, z, a)dedo
+Jo

—Cp (8% + Ox(e) +€2)2.

The integral term I> can be estimated thanks to (13). Indeed,

I = 2_15 Q,[I(wbg+Hs)(t,:v+5w,a)l2 — (Ve + H.)(t,z,a)|*] fde

= L [(Vx¢s + Hs)(tax + 0w, a’) - (vx¢s + Hg)(t,l', a’)] : [(Vx¢s + Hs)(tvx + 0w, a’) + (Vx¢s + HE)(tvxv a’)]fdc

26 Jo

> 2 [ [(Vede + B0+ 50,0) = (Vabo + Ho) (b2, 0)] - fde — 287 + & +0x())C.
QI

So, inequality I; + I, < %&? implies

1
/ / —OH. (t,x + odw) - wf(t, x,a)dcdo
Q' /o
1
+/ / [v(t,z,a) A curlH.(t,z + odw)] - wf(t, x,a)dedo
+Jo

— o f(t,z,a)v(t,z,a) - wde —/ v(t,z,a) -V, f(t,z,a)v(t,z,a) - wde
Qf !

< Cp= (07 +€° +6x(e))

| =

since (62 + 2 + x(e)) < 1(6% + 2 +x(¢)). Let £(t) be a test function in [0, 1], compactly supported in time



9 A FIRST SET OF APPROXIMATE OPTIMALITY EQUATIONS 37
and equal to 1 on the support of f, we apply (39) to (1 — f)§ =& — f. We have

/ /1 —OH.(t,x + odw) - (—wf)(t,z,a)dcdo

Q" Jo

+/ /1[v(t,m,a) AcurlH, (t,z + odw)] - (—wf) (¢, z,a)dedo
'+ Jo

QI

- 6t(_f)(t)$;a)v(t)x)a) -wde — /’[’U(t:maa) ) VI(_f)(tamaa)v(tvmva)] -wde

1 1
+ /Q/O —OH (t,x + odw) - w&(t)dtdzdo + /Q/O [u(t,z) A curlH, (t, z + odw)] - wE(t)dtdzdo

—/ O (tyult, ) - wdtdz —/ o(t,z,a) - Val(t)o(t, 7, a) - wde < cf%(a‘é’ +¢% 4 6x(e))
Q i

that can be written

/ /1 -0 H. (t,x + odw) - (—wf)(t,z,a)dcdo

Q' 70

+/ /1[v(t,m, a) A curlH, (t,x 4+ oow)] - (—wf)(t, z, a)dedo
+Jo

+ O f(t,z,a)v(t,x,a) - wde + /
Qf

[U(t)l';a) ) sz(t,m,a)v(t,m,a)] -wde

1
+/ —O0pH.(t,y) - w(t)dtdy + / / [u(t,y — oow) A curlH.(t,y)] - w&(t)dtdydo
Q QJo

—/ & (tult, ) - wdtde < C,«%(éz + &% + 0x(e))
Q

Since H. is bounded in D'(Q), we can write

/ /1 —OH.(t,x + odw) - w(—f)(t, x, a)dcdo

Q"0

+/ /1[U(t,x,a) AcurlH, (t,z + odw)] - w(—f) (¢, z, a)dedo
+Jo

QI

— [ O(=1 )t z,a)v(t,z,a) - wde — /I[v(t,m,a) -V (=), z,a)v(t,z,a)] - wde

+ /Q COH. (1, 7) - wE(t)dtda + /

[u(t, z) A curlH.(t, z)] - w&(t)dtdz
Q

_ / ¢ (yult, ) - wtds < cf%(a‘é’ + €2 4 5x(e)).
Q

Then, using (37), we simplify the three last terms of the left-hand side. Finally, we obtain for any test function
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with values in [0, 1]

1
|/ / —OH.(t,z + odw) - wf(t, z,a)dedo
rJo

1
+/ / [v(t,z,a) A curlH, (¢, & + o0w)] - wf(t, z, a)dedo (40)
Jo

— [ O:ef(t,z,a)v(t,z,a) - wde — / [v(t,x,a) Vo f(t,z,a)v(t,z,a)] - wde| < Cf%(dQ + %+ 6x(e)).
Q’

This concludes the proof of Proposition 3.4.

/

Let us notice that we also have

1
L+1L> / / —OH.(t,x + odw) - wf(t, x,a)dcdo
Q' Jo

1
+/ / [v(t,z,a) A curlH, (¢, 2 + odw)] - wf(t, x,a)dedo
e (41)

— [ O:f(t,z,a)v(t,z,a) - wde — / [v(t,x,a) Vi f(t,z,a)v(t,z,a)] - wde
Qf 7

—Cy(5(0% +&* + 0x(e)) = 05 (5(6* + €” + 6x(2)))-

| =
| =

10 Mollified approximate optimality equations

Let us consider the quantities studied in the previous section

I = % [0: ¢ (t, x + 6w, a) — By (t, x, a)] f (¢, 2, a)dc
o
and 1
I = o | (1(Vebe + Ho) (0 + 00, 0)P = [(Vabe + Ho)(b,2,0) 2L (1,7, a)de.
o

We recall that I; + I, < %. Let us rewrite this inequality for —w and £(1 — f), where £ is a test function
depending only on time and equal to 1 on the support of f.

Adding the two inequalities, we obtain
2

1{+I§+I§g2%

with 1
L= / [0 (t, 2 + 00, 0) — Bye(t, & — S, )] f (¢, 2, a)de,
L= 55 / [(Vede + He)(t 7+ 0w, 0) = | (Vade + Ho)(t, 2 — 0w, a) *]f (¢, 2, a)de
and 1
Ié = S o [at¢5(t,$ + (SOJ,(I) - 6t¢5(t7m7 a)]g(t)dc
1

% /., ((Vode + He)(t, @ + 0w, a)]” = [(Vade + He)(t, ,0)PIE(t)de
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But, thanks to (41) (applied to f(t,z,a) = £(t)), we have
1
L > / / -0 H.(t,x + odw) - w(t)dtdzdo
QJo

+ /Q /Ol[u(t, z) A curlH. (t, z + odw)] - w(t)dtdzdo

1

3 (6% 4+ + dx(e)).

—/ Ok (t)u(t, z) - wdtde — / v(t,x,a) - V€ v(t,x,a) - wde—C
0 .

Which becomes, since H, is bounded in D'(Q),

L > /Q—atHE(t,a:) - wé(t)dtdx
+/ [u(t, z) A curlH, (¢, z)] - w&(t)dtdz
Q

—/ atg(t)u(t,a:)-wdtdm—/ v(t,m,a)-vmﬁ(t)v(t,m,a)-wdc—C%(52+82+6x(5))
o ,

and then, thanks to (37), we obtain
1

!
>
I;> ~C

(62 4+ &% + ox(e)),

then finally

% [at¢5(t7m + 6‘*);(]') - 6t¢5(t7m - 6w,a)]f(t,a:,a)dc
QI
+2—15 1(Vade + Ho)(t, 2 + 0w, a)|” = [(Vade + He)(t,z = 0w, a)"]f (¢, 2, a)de
QI
< 01(62 + %+ 8x(e)).

0

In order to smoothen this expression, we perform the change of variable w — w + y for every y, we multiply by
a (radial) mollifier  defined on R? and we integrate with respect to y. We obtain

% //,[@%(t, T+ 0w + 0y, a) — 8,0 (t, x — dw — 8y, a)]f(t, z, a)y(y)dedy

+2i5 //,[I(Vms + H.)(t,z + dw + 0y, a)|> = |(Veo. + Ho)(t,x — 6w — 0y, a)|*1f (t, z,a)y(y)dcdy

1

< C=(62 4% + ox(e)).

(=2}
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Assuming v to be radial, we have y(—y) = v(y), and then

% // [01d< (t, x + dy + dw, a) — Opde (¢, x + dy — dw, a)]f (¢, z,a)y(y)dedy
1 2 2
+35 //l[|(Vm¢E + H.)(t,x + 0y + 0w, a)|* — |(Vede + H.)(t, 2 + dy — dw, a)|] f(t, z,a)y(y)dcdy

< C%(é2 + &2 + 5x(e)).

Then, we notice that

% // [0t (t, & + 0y + 0w, a) — Or g (t, x + 0y — dw,a)]f(t, z,a)y(y)dedy

1
= %/ // [0:V e (t, x4+ 0y + 0dw, a) - w]f(t,x,a)y(y)dcdody.
1 ,

Remark 10.1 The parity of v enables us to uncouple o and y and then to preserve the smoothness provided
by the convolution.

The same computations as in the previous part lead to the following mollified approximate optimality equations :

| — Ocf(t,xz,a)v(t,x,a) - wde — / v(t,z,a) - V. f(t,z,a)v(t,z,a) - wde
QI

’

1
// / —OH.(t,x + 0y + odw) - wf(t, z,a)y(y)dedody
o

1
+ / /, /_l[v(t,w,a) AcurlH. (t, x + 0y + odw)] - wf(t, z,a)y(y)dcdody|

< Op (8 +° +6x(9)

When f does not depend on a, inequality (40) involves only smooth quantities and then, we can pass to the
limit as € — 0 and then § — 0. We obtain

8tu+V-/cv®v—6tH+u/\curlH:0. (42)

This equation is nothing but the integral in a of the desired optimality equation (10).

11 Estimates for the time derivatives

Let us prove Proposition 3.5. First, we show inequality (14), using (19) when 6 = 0 (no spatial deformation),

/Q Ho(#, 2)ut +n¢(t), 2)(1 + n¢’ (£))dt da

1
—/ H_(t,z)u(t, z)dtdz + 3 [ — (V- + H.)|*dc"
Q Q'

1 1
<e?+ —/ |v"|?dc" — —/ lv|?de,
2 QI 2 QI
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with transformations satisfying
t'=t+nl(t) and 7,,(t") =t =t' + O(n).
We recall that n can be chosen small enough so that ¢t — ¢t + () is a diffeomorphism from [0,T] to [0, T].

Let us first simplify the following quantity

I " — (Vap. + H.)|*dc"

Qr

IN

52—/ Hs(t,a:)u(t—knC(t),x)(l+n('(t))dtda:+/ H_(t,z)u(t,z)dt dx
Q Q

QWU+UQ&J¢M%1+mﬂﬂMﬁ

1
—= lu(t,z,a)|*dc
2 Q’

g0 [ Ol ne), (140 ()"
= &24+0L+1+ I+ 1.
We have
L=y / ¢ (t)( / H.(t, @)u(t, z)de)dt — 1 / 0| / H.(t, 2)dyu(t, 2)dz)dt + OGP),
I, =—1I;

(obtained using the change of variable t — ¢ + n((t))

and

o= g0 [ CE@ [ ltzafet,o,dodsi

/C / v(t,z,a)|*c(t, z, da)dz)dt + O(n?).

So we have
|’U(t+7)<( ) ) - (vz¢5 —HE)(t,iL’,a)|2dc77 SSQ

—n/c / lo(t,z, a)[? (ta:dadaH—/Hta: u(t, z)da]dt

_n/g(t)[/ H.(t, 2)dult, 2)da]dt + O().

This inequality can be written

/ lo(t +1C(t), 2,0) — (Vade + Ho)(t 2,0)d" < &% —nAe + O(P) (43)
QI
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where

A, _/g / lo(t, 7, a) Pe(t, 7, da) da:+/H (t, 2)0, (C(t)u(t, z))dudt
tends to

limA, = /C / lv(t,z,a)*c(t, z, da)de— < O;H(t,x),((t)u(t,z) >
Then

/'wa+namxmwwvm%+ﬂammmeﬂs¥+wx@y+om%
Q/

e—0

with x'(¢) = max(]A¢|,€). Let us notice that x'(¢) > ¢ and x'(¢) — 0.

Indeed, (43) implies that
7. lin’(l) A, < O,
e—

then
limA, =0
e—0
and then
Ve e C2(0,T]), < —BuH(t): C(Bult,z) > + < C'(t /|u (t,z,a)|2c(t,z, da) >= 0. (44)

Finally, if we choose ¢ > 0 so that ( =1 on @, we obtain (14).

Remark 11.1 In the case where u =0, (44) implies the conservation of the kinetic energy. In the case where
w is not zero, (44) implies that the kinetic energy belongs to L>°([0,T]). Indeed, using the optimalily equation
integrated in a (42), we get

at%/|U(t,x,a)|20(t,x,da)daj = /[atui(t,a:)ui(t,:r) +8jui(t,a:)/Ui(t,:r,a)vj(t,a:,a)c(t,:r,da)]da:. (45)

Denoting f(t) /|v (t,x,a)c(t,z,da)dz, (45) implies that there exists Cy so that:

9 f(t) = Cof(t) <C

T
l/f@ﬁSC
0

because (¢, m) has finite Action, there is at least to such that f(to) < C. Using the Gronwall lemma, we obtain

f(t) < Cceet,

Since we know that

The kinetic energy is then bounded for every time t € [0,T].

12 Derivation of mollified optimality equations

We want now to pass to the limit when ¢ — 0 in the mollified approximate optimality equation (10), using that
< OiH.;9 >—< 0:H; g >

and
< curlH;; g >—»<curlH;g >

for all function g(t, ), compactly supported in 0 < ¢t < T with a finite norm in H*~ ([0, T] x D), for N large
enough. Then we get mollified optimality equations.
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12.1 Terms involving curlH,

In this section, we justify the limit for the term of (10) involving curlH,

1
/ / / [v(t,z,a) A curlH (t, z + 0y + odw + y)] - wf (¢, z,a)y(y)dedody.
rJ1
This term can be written
/g(t,x) A curlH,(t, ) - wdtdx

where g = gs,.,, is defined by

1
g(t,x) = / /f(t, x — o0y — odw,a)v(t,x — 0y — odw, a)c(t,x — oy — odw, da)y(y)dydo.
-1

Remark 12.1 In those computations, we use the following abusive notation
/f(t, z,a)c(t,x — 0y — odw, a)da

instead of
/f(t, z,a)c(t,x — 0y — odw, da)

and we abusively write integral signs instead of duality brackets.

Remark 12.2 The parameter 6 > 0 will remain fized and we use the notations dyy = y(y)dy and
Ty s5(y) = 0y + odw.

Remark 12.3 In some estimates, we use that the following functions belong to L*°(Q),

Ot x) = / (t, @ — Ty 5(y), 0)(y)dydoda,

that in fact is equal to 1,
V(t.o) = [t = Tos(y), )1 (y)dydoda,
which is equal to

/ cv?(t, z,a)yra(z — x + odw)dzda,
DxA

with
yra(y) = Y 6 y((y — k)/9),
kezd
and then belongs to L™ since the kinetic energy is bounded.

We have to show that g has a finite H>"([0,T] x D) norm for N large enough and is compactly supported in
0 <t < T. Notice first that since f(¢,x,a) is compactly supported in 0 < t < T, so is g(¢,x). The mollification
by ~ ensures that g(t, z) is smooth in z € D.

It remains to show that d;g belongs to L*(Q) with @ = [0,T] x D since the convolution enables us to transfer
the derivatives in space on 7.

We show the following proposition
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Proposition 12.1 For every function p(t,z) € L*(Q), we have

< p(t,l’); 6tg(t7x) >§ C||p||L2(Q)-
Remark 12.4 Formally, we write

Org = /6tfvc+f1;6tc+f6tvc

/(%fvc — V(fv) - ve+ fove.

Then using the formal limit of the estimates obtained for the derivatives of the velocity v, we obtain a L? bound

for Oig.

Proof
For every p € C°(]0,T[x D), we write

dtdx

<p(t,2);0g(t,z) > = lim | p(t,2) lg(t +n,2) — g(t,z)]
Q Ui

n—0
= lim Il + [2
n—0

with T, 5(y) = dy + odw. Since the function p is a smooth test function, there exists 7 so that

[9(t +n,2) — g(t,2)] _ [9(t +n,7) — g(t,2)]
/Qp(t, x) ” dtdx = /T p(t, ) " dtdz.

let us split this integral formula in two terms. The first one is

L = / p(t, x)(/ flttmz=Tos(). a7)7 — e = Tos), 0)] cv(t,z — Ty 5(y), a)y(y)dydoda)dtdz

IN

10: |~ / Ip(t, 2)\elol(t, @ — Tos(y), a)y(y)dydodadsda

IN

100 |l \/ / ( / o]t — Tos(y), a)y(y)dydoda)?dtde

IN

CllatfllellpllmJ/ clv?(t,x — To,5(y), a)y(y)dydodadtdx

IN

ClOef Le=llpllr21vllL2(qr de)
The second one is

I, :/Qrp(t’m)(/f(t+77,$ T, 5(y),a) [co(t +n,2 — Ty 5(y),a) — co(t,z —

n

T55(y),
2(9) a)]'y(y)dydada)dtdm
To estimate this integral term, we split it into three parts introducing a mollification of v. defined by

b.(t,,a) = /D 0.t + X(2)%, @)\ (2)dz,

where )\ is a mollifier on
R
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Remark 12.5 We have to introduce v. since ¢ and v must be evaluated at the same time t.

Let us introduce
L=I+1,+1;

with

fo=[ ) [ g, = T 208 2 o0 WD Oy 7, ), 003 )y,
Q- n

et +n,2—T,5(y),a) —c(t,z —
n

Ty5(y),a)] v(y)dydoda)dtdz

L= /Q bl [ otz = Tusti).a)

and

[5 — /Q p(t, CU)(/ fn,y [175 (t, Tr — Tg,a(y), a)n_ 'U(t, Tr — Tg,a(y), a)] C(t, T — To,d(y), a)’y(y)dydada)dtdm

where fy, = f(t+n,2 - T55(y), a).

Let us first consider I5.

I3 < O fllpeonllpll L

X (/ (/( [t +n,2 — Tys(y), a27— e (t,x — Tr5(y),a)] Ve(t + 0,2 — Tos(1), a)v(y)dydada> dtdx) :

.

(46)

We have used Cauchy-Schwarz knowing that f belongs to L*°(Q) and C(t,z) = 1. Moreover, thanks to Jensen’s
inequality, we have

(/D ve(t, 2 + X(6)7, )\ (2)dz — vit, z, a)) o </D(v8(t, 2+ x(e),a) — v(t, 7, a))A(z)dz) i
< /D(vs(t, z+x(e)z,a) —v(t,z,a))’\(2)dz.

Then, we obtain

/ / |U(t + n,T— Ta’,&(y)a a) - f}E (ta T — Ta,d(y)a a)|20(t + n,T— Ta’,&(y)a a)dydadtda:da
Qr

< / / ot + 1,7 — Ty (), @) — e (7 — Ty () + X()z, PAE)eE + 1,7 — Ty (y), a)dedydodtduda.
Qr

Thanks to inequalities (13) and (14), we get the following estimate

(€ +7° +x()°)?

I3 < |Ipllr2(@)C

We treat I5 in a similar way and obtain

£2)3
I < Ilpll20) € n’ .
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To estimate Iy, we use the mean value theorem and the conservation of mass (6). Indeed,

1
I4 :/ p(t7 CE)(/ f(t + n,T— Ta,é(y)a G/)’lN)E (ta T — Ta,é (y)v a’)atc(t + 6777 T — Ta,é(y)a a)d0d7ydada> dtdx
Q- 0

/Q itz ( / / FE 4,0 = Ty s(y), @) (t, & — To.s(y), @)V - (c0)(t + O, & — Tg,a(y),a)dﬁdﬂyydada> dtd

An integration by parts with respect to y enables us to transfer derivatives to f and 0. (we recall that T, 5(y) =

1
dy + odw and that V, - (cv) = gvy - (cv)). Here, all the estimates are made for ¢ fixed.

L=

"1
/ p(t7 ZU) (//0 gvy(f)(t + n,T— Ta,é (y)v a’)ﬁs (ta T — Ta’,&(y)a G)C’U(t + 0777 T — Ta,é (y)v a’)dad’yydgda) dtdx
_+_

1
/ p(t, ) (// %(f)(t +n,2— T, 5(y),a)Vyo:(t,x — Ty 5(y),a)co(t + 0,z — T, 5(y), a)dﬁdﬂyydada> dtdx
Q- 0

=1+ I

The first term is bounded since

1
Iy < g||p||L2(Q)||vf||L°°(Q)||V||L°°(Q)

(/ c|o-*(t + 08, x — Ty 5(y), a)d,ydadodd|dtdz)*/?

and because the inequality (12) implies that v. is uniformally bounded in L%(Q’,dc).
Let us study I7. Let us notice that

0iv:(t,x,a) = (L/ (t,x + x(€)z,a)0;A\(z)dz
1
= (—/UE (t,x + x(€)z,a) — ve(t,z,a)]0;\(2)dz
since /8i)\(z)dz =
From (13) we have
/ / |ve(t, x — (y) + x(e)z,a) —v-(t,x — Ty 5(y),a) *c(t,x — Ty 5(y), a)dad,ydodtds

1
NBE / / lv-(t, © + x(€)2,a) — ve(t, x, a)*c(t, v, a)dad, ydodtds
Q-

< CX(S)2 (x(e)* +¢%)
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by translation invariance on the periodic cube. Since x(¢) > €, we can write

/ / V0. (t,x — T, 5(y),a)|*c(t + 0n,z — Ty 5(y), a)d0d,ydodadtdr < C.
Q-

And finally

1 )
I < Cf |p(t,z)|SV(t+ 9n)(/ Ve (t, 7 = Ty 5(y), @) Pe(t + 0,2 — Ty 5(y), a)dbd,ydoda)= didz

0. 5

IN

C||p||L2(Q)(/ (/ IVabe(t, 2 = Ty 5(y), a)Pe(t + 00, 3 — Ty 5(y), a)dbd, ydoda)dtdz)?
Q-

IN

Clipllzz(@);
since V' belongs to L*°.

Finally,
< p(t,x);Og(t,x) >=lim A,
7

where

_ ot +n.2) —gt.2)]
A77 - /Qp(t, ) n dtd,

(Mg

(e +x()%)
< O+ ———— )l o)
for any e. Passing to the limit when ¢ — 0, we obtain

A, < Clpllez()

for every n. So when n — 0
< p(t,l’); 6tg(t7m) >S C||p||L2(Q)-

12.2 Terms involving 0,H.
It remains to pass to the limit in the term involving a time derivative
—OH (t,x + 0y + odw) - wf(t,z,a)y(y)dedody = / —0¢H(t,z)h(t,x) - wdt dx,
Q Q

where

h(t,z) = /f(t, x + 0y + odw, a)y(y)c(t,x + oy + odw, da)dy do.

The function h is smooth with respect to = thanks to the mollification. Moreover, we use (7) and we obtain

Oh(t,x) = /((% +ou(t,x +dy + odw,a) - Vo) f(t,x + dy + odw,a)c(t, z + dy + odw, da)y(y)dy do

- Vo /v(t, x + 0y + odw,a) f(t,x + dy + odw, a)c(t, x + oy + odw, da)y(y)dy do

which belongs to L?(Q). Then h belongs to G and we can pass to the limit when ¢ — 0.

47
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13 Partial regularity of the field H

In this section, it is shown that the limit field H has some partial regularity, namely E = O;H is a locally
bounded measure and B = —curlH is square integrable with respect to the Lebesgue measure.

13.1 B = —curlH is Lebesgue square integrable
We show here that B = —curlH belongs to L?(Q) thanks to the Riesz theorem. So we have to prove the

inequality

< curlH (t,z); f(t,x) >< C||f||Lz(Q).

For that purpose, we use a formulation of the curl involving finite differences and which vanish for gradients.
We then introduce

do

(cwrlsf); = /1 [f3(t,z,y + 0,2+ 0d) — fa(t,z,y, 2 + 00)]
0

)

/1 [fg(t,a:,y+7'(5,z+5) - fz(t,x,y+7(5,z)]
— 5 dr.
0

We have (curlf); = }ir%(curlgf)l and curls f vanishes as f is a gradient.
—

Indeed, using the mean value theorem, we have

1,1
(curls f)1 = / / O fs(t,z,y + 70,2+ 0d) — O3 f2(t,x,y + 76, z + 0d)dodr,
0o Jo
which ensures that curly f vanishes as f is a gradient and that

do

(Curlf) = lim ' [fg(t’x’y—'_(s’z—'_ga)_f3(t)x)yaz+06)]
T =0 /o 5

/1 [fo(t,x,y + 70,24 0) — falt,x,y + 70, 2)]
_ 5 dr
0

as f is smooth. To obtain an estimate involving only || f||rz, we study

/(curlaH)lfl = /[/1 [H3(t,w,y+5,z+05)—Hg(t,a:,y,z-i—aé)]dg
Q QJo

J

dr)fi(t, z)dtdz

_/1 [H2(t7xay+7-572+6) —HQ(t,.T,y+T6,Z)]
1)
0
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Since H = lim._,o H., we have

1 € _ Ige
/(curl(;H)lfl — lim / [/ [HS (t,z,y + 0,z + 00) — HS (t,w,y,z-{—aé)]dg
Q Q J0

e—0 1)

B /1 [H5(t,z,y + 76,2+ 0) — H(t,z,y + 76, 2)]
0

5 dr)fi(t,z)dc

do

= lim
e—0

[/1 [v§(t, 2,y + 0,z + 0d,a) — v5(t,x,y,z + 00,a))
@ Jo 0

dr)fi(t, z)de

_/1 [v5(t,z,y + 70,2+ 6,a) — v5(t,z,y + 76, z,a)]
)
0

since curls(Veé.) = 0 and f is zero outside Q.

Moreover, equation (13) implies that

g2 + 6x(e)

Ydode < C( 5

+1).

/ /1([v§(t,w,y+5,z+05,a)—v§(t,w,y,z+a(5,a)]2
, 62
+Jo

Then, for every € and every §

€2 4+ dx(e 1
/QCUI“L;HE . f < C(TX() + 1)2||f||L2(Q)

So passing to the limit when £ — 0 for a fixed d, we obtain

/ curls H - £ < C||fl]12(0)-
Q

Remark 13.1 let us notice that
/ curlsH - f :/ H - curls f.
Q Q

Since C' does not depend on §, the estimate remains true at the limit and then

< H(t,z);curlf(t,z) >=< curlH(t,z); f(t,2) >< C||f||r2(q)-

13.2 FE = 0;H is a locally bounded measure

Let us now show that F is a measure locally bounded on ). Let ((t) be a smooth function, we study

/ C(t) |H5(t + 77)1.) - He(tvm”dtdx
Q n

or more precisely

. / @ | [y (Ho(t + 1,7 + 0de) — He(t, 2 + gde)) - edo]| i
Q

n

49
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where 7 is small enough so that ((¢t — n) is compactly supported in time and let e be a fixed unit vector in
R,

Let T be small enough so that ¢ vanishes outside @', we have

@ | [y (Ho(t + 1,7 + 0de) — He(t, 2 + ade)) - edo]| ;
QL n

C

@ | [3 (He + V¢.)(t +n,2 + gde,a) — (He + Vé.)(t,x + 0de, a)) - edo]| "

QL n

IN

o Jo (Vo (t +n,z +mse,a>n— Vo:(t,z + ode,a)) - edo|
QL

C

I, + I».

Thanks to (13)

=

e® + 6% + dx(e) +n* +nx'(e))
n
On the other hand, thanks to the mean value theorem, we have

IlgC(

\ | [ (8- (t + O,z + be,a) — By (t + O, z,a))d6)| .

I, = t
"o “ 0
and then
1
N(t+ 0 0 —X(t+ 0 de
IQ S C(t)|f0( ( + 77:55“‘ e?a’) ( + ,'772770’)) |dc
Q! 0
|f01(§|v¢5 + H)?(t +0n,x + de,a) — %|V¢E + H.|?(t + 0n,x,a))dd|
+ ¢(¢) de
Q; 0
= I+ 1

where \°(t,z,a) = —0;¢: (t, 7, a) — $|Vé- + H-|*(t,,a).

We estimate I, as I; writing

=

(2 + 6%+ 0x(e) +n° +nx'(€))
5

I, <C

Since A\* > 0 and /)\Edc < €2, we have

I; <

1 I3 £
/ / () (A (t+077,a:+6e,c:5)+/\ (t+0n,m,a))d0dc
+Jo

IN

2 1 € € _ €
2%+/ / C(t)(/\ (t 4+ 0n,z + de,a) + A ((5t+9n,a:,a) 2A (t,:r,a))dedc
+Jo

2

€
= 22 L1
6 5 6
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where

dfdc

I5 — /C(t) (at¢5(t + 97%55 + 5650') + 8t¢(85(t + 977,55,@) B 28t¢8(t7m7a))

and
1
Iy = 2_5/g(t)(|v¢5 + H5|2(t +6n,x + de,a) + |V + H5|2(t +6n,z,a) — 2|V + H€|2(t,x,a))d0dc.

The term Ig can be estimated as Iy and

Iy = Ir + Iy
where
I7 - % /[C(t)(6t¢€(t + 977) T+ 66) a) + 6t¢€(t + 0777 z, a)) - 2C(t - n0)8t¢€(t) z, a)]dadc
and
Iy = 6/ C(t —nd) — ((t))0:de(t, x,a)dBdc
1
= 5 [ 26t~ 1) = CON X (1. )b
5 [t =)~ CO)IV6. + HP 1,2, )b
n
< Oy
Indeed,
[ (€t =n) — o) (.t < [ Tip(QnbON (5, a))dbe < Ce?
and
/@@—W%%UMV%+H$@wﬂwﬂks/MMOWW@+H$@wﬂWM%SCn
Then
=5 / )(@r9e(t + 0,z + de, a) + Orge (t + O, 7, 0)) — 20(t —0)Dsp-(t, o, a)]dBdc
= Iy +2Lo
where )
I9 = g /C(t)[6t¢s (t + 977) T+ 667 a) - at¢5 (t + 977; z, a)]dadc

1
= /C(t)/ OV oe(t +6n,x + ode, a) - edddodc
0

-edode

_ /C / (Ve + Ho)(t +n,z + ode,a) — (Vo + Ho)(t,x + ode,a))
n

1
—/ ¢(¢) / OcH(t + 0n,z + ode) - edfdodtdx
0

l=

(e 4+ 0% + dx(e) + n* + 1x'(e))
n

IN

c +C
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(since Oy H, is a bounded sequence in G', we have /C(t)atHg(t,x)dtda: <0).

ho = 5 [ K086t +6n.0,0) = G(t = 18)00.(t,. )| dbie.

Let Z(t) = ((t — nf)0:d:(t, x,a), we have

1
o = % / (Z(t +n6) — Z(t))dbdc = g / / 8,2 (t + onf)Bdodbdc.
0

And then .
Lo = g // [C(t = (1 = o)nb) 0 p (t + 00, x, a)|0dodfde
0
or using (6)
0 1
IlO = _g / / C(t - (1 - U)na)atv¢5 (t + 0-6777 z, Cl) . ’U(t, z, a’)edgdedc
0

1
= _g // Ct—(1—=0)nd)0 (V- + H.)(t + 00n,z,a) - v(t,z,a)ddodddc
0

1
+3 / / C(t = (1= o)n)d He (t + 0, ) - u(t, x)fdodddtdz
0

< Iy +112+C'g
where
n 1
o= =1 [ [ ac— (1= 08) (V. + H¢ + 0. .0)] -o(t, 2, 0)pdBdode
0

n [ KON + Ho)(t + 0, x,0) — ((t = 10) (V- + He)(E, 2, a)]

~v(t,z,a)dfdc

-1 ;
Then we have , , , / )
L, < C(g(s +4 +5x(6)n+n +1x (6))2)
and
I, = g//olﬁ'(t—(l—a)nﬁ)(ngSg+Hs)(t+00n,:r,a)-v(t,:r,a)t‘)dt‘)dadc
< Cg.

Finally, we have shown that

1 —
/ | / (H-(t +n,z + ode) — H.(t,z + ode)) do|dzdt
- Jo n

2 2 2 ! 1 2 2 2 / 1
< C(HgJF(E +4 +5x(6)n+n +nx'(€)) +(6 +4 +5x(6)6+n +nx'(€)) )
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When € = 0 with n = d, we obtain
1
5/ < H(t,x); f(t —n,z — ode) — f(t,x — ode) > do < C'sup|f]

for every test function f and then, 8;H is a locally bounded measure ( we choose ¢ so that ( = 1 on the support

of f).
14 Final step : Derivation of the optimality equations

We have justified the limit £ — 0 and we have obtained

/(&f(t,m,a) +o(t,z,a) -V, f(t,z,a))v(t, z,a) - wde — /8tH -wh(t, ) +/cur1H(t,a:) Ag(t,z) w < Cyo.

We recall that
h(t,z) = hs(t,z) = //11 flt,x — oy — dow, a)c(t,x — oy — dow, a)y(y)dydoda
and
g(t,z) = gs(t,z) = /f(t, x — 0y — dow, a)v(t,x — oy — dow, a)c(t,x — oy — dow, a)y(y)dydoda.

It remains to identify the limit § — 0. For that purpose, we define

1
Cwdy = / /c(t, x — odw — dy, a)y(y)dydo
1

1
My sy = / /vc(t, x — odw — 0y, a)y(y)dydo.
—1

We know that m, 5. converges up to a subsequence in w — L?(Q'). Moreover, for every smooth f,
/f(t,a:, a)yMmey, 5.4 =+ /f(t,x,a)v(t,a:,a)dc.

Indeed,,
|/f(t,a:,a)(dmwygW —dm)| = |/(f(t,:r — 0y —odw,a) — f(t,z,a))dm| < C4.

Moreover curlH€ L2. Thus there is a sequence of smooth field K. (¢, z) approximating curlH in L? norm. Using
this sequence, we show

/curlH(t, x)f(t,x — 0y — odw, a)v(t,x — oy — odw, a)c(t,x — 0y — odw, da)dtdx — /curlH(t, x)f(t,xz,a)dm
since denoting

I = | /curlH(t, x)f(t,x — oy — odw, a)v(t,x — oy — odw, a)c(t,x — dy — odw, da)dtdx

- / curlH (t, z) fdm)|,
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we have
I<L+L+1I3+14
where
L = | /curlH(t,x)(f(t,a: — 0y — odw,a) — f(t,z,a))v(t,z — Jy — odw,a)c(t,z — Oy — odw, da)dtdz|
< dl|curlH||p2||V fllLe (/ v (t,x — Oy — odw, a)c(t,x — Sy — odw, da)dtda:)%,
I, = | /(curlH(t, x) — K°(t,x))f(t, z,a)v(t,z — dy — 0w, a)c(t,x — 0y — odw, da)dtdx|
< leurlH — K¢ g2 )| fl| e (/ V2 (t,x — 8y — odw, a)c(t, & — 8y — odw, da)dtdx)®
< CllearlH — K¥||z2(q)l| L=,
I = | /Kg(t,a:)f(t,a:, a)(v(t,z — 0y — odw, a)c(t,z — 0y — odw,da) — v(t,z,a)c(t, z,da))dtdz|
< CH|IVK )= < Ced
and
I, = |/(curlH(t,a:) — K*(t,z)) f(t, z,a)v(t, z,a)dc|
< fleulH = K g2l flle=( [ JoPde) .
Finally,
I S CE5+C||curlH—KE||L2(Q)||f||Loo

< (Ce+C.é

for every €. So when § — 0 and then £ — 0, we obtain the result.

But it is impossible to define the product cd;H. We have to do the difference between ¢ and the weak-*
limit of ¢, 5,4 in L®(|0:H|; C(A)') when 6 — 0. We have

Iht, z) - /f(t,:n,a)cu,,aﬁ(t,m,daﬂ <Cyé
and since 0; H is locally bounded, we obtain
| / O H (1, 2) (h(t, 7) — / F(t, 2, )cu s (t, 7, da))dtda] < C6.
Let ¢, 4 be the limit of ¢, 5, in w * L>(|0:H|; C(A)"), we have (2.1) which implies that

/atH(t,:r)/f(t,a:,a)cw,(;yv(t,x,da)dtd:r—>/c’kH/f(t,:r,a)cwﬁ(t,x,da)dtdm.

Finally, we obtained

/(9tH “w / f(t,z,a)cy ~(t, z, da)dtde = —/v ~w(Oef +v -V f)de+ v AcurlHf - wde.
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Since the right-hand term does not depend on v and depend linearly on w, ¢, , can not depend on y or w. Let
us denote ¢ = ¢, ~, we have, up to a subsequence

O +cv-Vyv—cOH + cvo AcurlH =0

We can show the convergence of the whole sequence since denoting

Fs,aZ—/atHE-wh—k/curlg/\g-w,
we have
|—/v(atf+v.vxf)dc+FE,5| < Cp(e +6).

From every subsequence of F; 5, we can extract a sequence that converges to

F:—/v(atf-i—v-vwf)dc

which does not depend on the subsequence.

Using the uniqueness of the limit, we see that the whole sequence F; 5 converges. Using again the uniqueness
of the limit, we deduce that there exists H (limit of a subsequence H.) so that

0w+ cv - Vv —cOH + cv A curlH = 0,

which completes the proofs.
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