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1. INTRODUCTION

1.1. The Vlasov-Maxwell system. The modelling of plasmas, i.e. of rarefied ionized
gases, leads naturally to the Vlasov-Maxwell system :
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where ¢ denotes the light speed, —e and Ze the respective charges of the electron and
ion, pp and €y = 1/(c*up) the permeability and the permittivity of vacuum. In those
equations, f (resp. ¢) is a positive function which represents the probability for an
electron (resp. for an ion) to be at time ¢ at the point x € Q C R? with the momentum
£eR3.

The first two equations, the so-called Vlasov equations, express that charged particles
evolve under the electromagnetic force :
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where X and P are the position and the momentum of the particle at time ¢, and
V = cP/+/(cm)? + P? its relativistic velocity.

The Maxwell equations take into account the wave propagation of the electromagnetic
field. They can be possibly replaced by the Poisson equation in electrostatic regime,
but not in relativistic regimes when the particles velocities are close to the light speed.

The understanding of this model is still incomplete : as the Vlasov-Maxwell system

is both hyperbolic and nonlinear, we expect that singularities arise in finite time, and
1
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then propagate with finite speed. The mathematical study of such a system requires
then a notion of solution with low regularity. The notion of weak solution we will use in
this paper is not completely satisfactory since it does not ensure neither the uniqueness
of the solution nor the fundamental physical properties.

Proposition 1.1. Let (f, g) be a smooth solution of (1.1) on [0,T]. Then
e the global charge and the global energy are conserved on [0,T]

(1.2)
[[ ste..6dste =2 [[ gt dets = [[ fuwc)acan

// eV 2+ EE(mef +mig)(t,x, §)dédr + % /(60|E|2 + %|B|2)(t,x)dx
0
= [[ V/EF et + mign) o dgto + 5 [ (@l Bl + - B )
0

e the following local conservation laws hold on [0,T] x §2

Orpe + divgje = Oyp; + divyj; = 0

€ Q&
8 e d T eE e/\B_O
(1.3) tj+w/f\/7§+mp +mj
Z Ze
Oji + divy | g—F—= LO8 g——esz 6ji/\B:O
e+ &2 m;

with the notations p, = [ fd€, p; = [ gd€ for the densities of charges, j. =
e, j; = d th tum densities, and j, = &g, 5 =
[ fede, g [ fed€ for the momentum densities, and j ff\/m £

J9—%
1.2. Scaling for the quasineutral regime. In some regimes, we can actually obtain
a correct description of the plasma behaviour through simplified models. Here we are
interested in the derivation of such a model for a quasineutral plasma. This means that
we consider the plasma on a space scale which is very large compared with the Debye
length, which allows to neglect the plasma oscillations (created by the electric field).
As a matter of fact, in order to isolate the phenomena which are directly linked with
the quasineutrality constraint, we will assume in all the sequel that ions have infinite
mass, and consider that the ion charge density Zp; = n(t, z) is fixed. To be completely
rigorous, we have now to precise all the relations between the respective sizes of the
various parameters.
The various scales arising in the equations are those listed below

d€ for the current densities.

e 1" the observation time scale;
e T, = L/c a characteristic time scale for the light propagation (where L is the
observation space scale);

e T, = \/mey/ne? the reciprocal plasma frequencys;
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e T. = v*\/ne?uy/m the reciprocal gyrokinetic frequency (where v* = L/T is the

characteristic bulk velocity).
The quasineutrality assumption reads

% =e<< 1.
We assume moreover that the bulk motion is non-relativistic, i.e.
T,
T v << 1
Then we introduce a third nondimensional number
_T _7
T €’

which measures whether or not the magnetic field is a relativistic effect.
Finally we come down to the study of the following nondimensional system

#me_ (E—FCYL
[+°8 L+ 28

(1.4) div,B =0, €div,E =n— / fde,

ad,B + curl,FE =0, —ae’0,F+ curl,B = —a/ #fdf,
VAR ES

for small values of the parameters € and .

From a mathematical point of view, in order to understand the main features of the
plasma behaviour for small values of €, we are going to study the limit ¢ — 0 : in
this limiting process, some phenomena (such as oscillations) will be neglected but they

should be only corrective terms.

In such a limit, we expect that the negative charge p. equals everywhere the positive
charge n (which justifies the terminolgy of quasineutral limit), with spatial oscillations

on a characteristic length of order e.

€
P )

€

figure 1
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The oscillations on the electron density generate of course oscillations on the electric
and magnetic fields through the Maxwell equations.

The problem is to understand how these oscillations interfer, and in particular if the
coupling by the nonlinear terms produces non-oscillating terms in the transport equation
(which corresponds to an energy loss or an energy winning on the non-oscillating part
due to turbulent effects).

In this paper, we will actually consider only a small part of this problem, for technical
reasons and especially because the asymptotic behaviour of the system depends strongly
on many conditions. We start by giving our two main assumptions, and then try to
explain their physical meaning as well as the phenomena we expect to be controlled or
to disappear under such assumptions.

(H1) the ion density of charge n is homogeneous and constant, take for instance
n=1.
This is of course a very particular case which could be extended a bit, assuming only
that n depends on t and varies slowly with respect to x (typically on lengthes of order

-1

).
If this assumption is not verified, the plasma will have a much more turbulent behaviour.
Indeed, the singular perturbation

1 1
Ly, : (u,be) — (e, — curlye, —nu — — Curlxb)
a o

does not preserve the Sobolev norms if V,n # 0. Then we expect that the regularity
and compactness are lost instantaneously under this linear perturbation. Moreover, the
kernel of such an operator L, is much smaller if n is not homogeneous, which means
that the averaged fields (i.e. the projections of the fields on Ker(L,)) contain few
informations (see [6] for an analogous study on rotating fluids).

(H2) the velocity profile is uniformly stable. More precisely, we assume that the initial
data is almost monokinetic

// € —u’(2)” f*(x, §)déda — 0.

We could also weaken this assumption, and suppose that the initial density is close to
any global thermodynamic equilibrium (for instance a Maxwellian with density n and
temperature 1). See [7] for a precise description of these equilibria.

If this assumption is not satisfied, instabilities will occur at the kinetic level (typically
double-humped instabilities). These instabilities, which are still bad understood, cancel
immediately the averaging process that we want to describe in this paper (see [8]).

1.3. Description of the asymptotics. Under assumptions (H1) and (H2), we are
able to give a precise description of all oscillations, and of the possible coupling through
the quadratic term of the transport equation (provided that there is no boundary).
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The study of the asymptotics follows the following scheme. As the data are almost
monokinetic, the density will remain close to a Dirac mass in v. We can prove that the
moments behave as the solutions of

p=1—ediv,(eF), div,B=0

1
(1 — ediv,(eE))eE +aj A B =0

. R S
0j +div,—(j ®j) + =
P €

(1.5) 1
0B + — curl,(eE) =0
e

1 1
Oy (eE) — v curl, B = Ej’

since the relativistic correction vanish in the limit.
The second part of the job is based on the study of the singular perturbation L

1 1
L: (u,b,e) — <e, — curlye, —u — — Curlxb> )
« Q
As all coefficients are constant, we can work with the Fourier formulation, what allows
to determine easily the eigenvalues and eigenvectors of L. The limiting triplet (u, e, b)
belongs necessarily to Ker(L), so that

1
u = —— curl,b, e=0.
Q

Then we establish the limiting evolution equation by projecting the local conservation
laws on the kernel of L. The difficulty consists in proving that there is no constructive
resonance. The algebraic results we need here give conditions on the domains under
which the convergence result holds.

The relative entropy method used in this paper, and whose principle is described in
the first paragraph of Section 4, has already allowed to solve many problems concerning
the gyrokinetic and quasineutral limits in plasma physics (see |1, 3, 7|). Some questions
remained nevertheless still open, essentially because of a lack of understanding of the
Vlasov-Maxwell system. In particular,

e the global conservation of energy and the local conservation of momentum are
not ensured for weak solutions of (1.4), i.e. for the only solutions of (1.4) that
are known to exist globally in time;

e the relativistic correction has to be taken into account in the initial model (1.4)
except in electrostatic regimes, but it does not appear in the limiting system,;

e the oscillations generated by the Maxwell equations have a much more compli-
cated structure than the ones created by the coupling with the Poisson equation.

The various restrictions imposed in [1, 3, 7] concerning these three points are relaxed
here, by analyzing precisely the analogy between the initial system (1.4) and the limiting
system.
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2. MAIN RESULTS

2.1. Weak solutions for the Vlasov-Maxwell system. We start by giving the
mathematical framework of our study. We consider the spatial domain

R R R
X X
a1Z (IQZ a3Z

in order to avoid additional difficulties linked with the modelling of the boundary, in
particular the appearance of boundary layers. We recall that the Cauchy problem (1.4)
with initial data

(2.1) fii=0 = fin, Ej=o = Ein, Bj—o = Bip,

satisfying the standard compatibility conditions

0=

(2.2) EdivyFy = 1 — /fm(x, £)d¢, divyBy, =0,

and the energy bound

1 1
(23) 8m = ? // 1\ 1 + ’72§2fmd§dx + 5 /(€2|Em|2 + |Bm|2)dl’ < +OO,

is not known (nor expected) to have global strong solutions. Then we will work with a
very weak notion of solution.
A weak solution of (1.4-2.1) is a triplet

(f,E,B) € L*(R", L*(Q x R} RT) x (L*(2))?)
NC(RT;w-L*(Q x R?) x (w-L*(2))?)

which satisfies
1 1
e o // PO PR + / (CIEW®P + [BO)P)dr < Emy V>0,

and finally satisfies (1.4,2.1) in the sense of distributions.

The global existence of such weak solutions, as well as the local conservation of
mass and the energy decay are established in [4]. Whether the local conservation of
momentum holds in the sense of distributions on R% X 2 is still unknown; this is one
of the difficulties in rigorously deriving hydrodynamic models from the Vlasov-Maxwell
system. The construction of [4] yields actually a solution which satisfies in addition a
conservation law for the momentum and a global energy equality with defect measures
coming from a possible lack of compactness of the sequence of approximating solutions.

Theorem 2.1. For fized e, > 0, let i, € L'NL*(QxR?) be an ae. nonnegative func-
tion, and E% B2 € L*(Q) be two vector fields satisfying the compatibility conditions

(2.2) and the energy bound (2.3). Then there exists a weak solution (f*, E<*, BS) to
(1.4,2.1) which satisfies
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e the local conservation of mass in the sense of distributions on R% x

(25) at/fe’adf + d’lﬂm/ \/%er,adg =0,

e the local conservation of momentum with symmetric nonnegative matriz-valued
defect measures pg, pg € LR, M(Q)), a vector-valued defect measure pupp €
L®(R*T, M(Q)), and a defect measure m** € L (R, M(Q2x S?)) (coming from

the approzimation scheme of the Vilasov-Mazwell equations)

Oy </§f€’°‘(t,x,§)d§+7/ . Udmf’a(t,x,0)>

. £®¢&
d €T Ea ? d d o ) Y
0 +div 1—|—fy§2f §)§+/gesza®am (ta:a))

1 1
+nES" — div, (e E°* ® eE“ — §|6EE’°‘|QId) — divg (ug" — §tr(uf§a)1d)

1
—div,(B* @ B — §|BE’°‘|QTd) — divg (ug" — tr(pg™)1d)
+eadi(eE°Y A B9%) + eadipfiy = 0,
in the sense of distributions on R* x ,

e the global conservation of energy with the defect measures p3", pg" and me* for
allt >0

_//mf”‘txﬁdédawr// “(t,7,0)

ceS?

(2.7)
+§/@wwwwﬁ+wwwwnm+§/ww%»+w@@w g

as well as the inequality

€, ]' €, €,
238) [ ditsg <5 [ atertanie) + (i),
for all positive test function g(t, z).

2.2. Strong convergence for well-prepared initial data. In the case where the ini-
tial data are well prepared, which means that the initial velocity is essentially monoki-
netic, the initial fields converge strongly and the limiting fields belong to the kernel of
the singular perturbation, we obtain the following strong convergence result.

Theorem 2.2. o Let vy, by be two divergence-free vector fields of H*(2) (s > 2+3)
such that

1
nvg + — curlyby = 0,
o



8 M. PUEL AND L. SAINT-RAYMOND

for some homogeneous n. Then, there exist T* €]0,+o0] and a unique (v,b) €
Lge ([0, T, H*(S2)) solution of

ov+v-Vo+e+avAb=0
1
(2.9) atb—f—— CurleZO

nv + — curlyb = 0.
Q

o Let (f2%)ea be a family of nonnegative functions of L' N L*( x R?), and
(E5) e (Bii)ea be two families of vector fields of L*(Q) satisfying the com-
patibility conditions (2.2) for the same constant n, as well as the convergence

— Yo 2 ea ea
oM (@, &)dEda+= /6 ES%(x) | da+= / B, (x)—bo|"dx — 0 as e — 0.
//1+\/1+7§2 ) | of | of

Let (fo*, E9*, B9%) be, for every e > 0, > 0, a solution of the scaled Vlasov-
Mazwell system (1.4) with initial condition (2.1). Then, for all T < T*, the
current density converges weakly

= [ £one) JIF e — o in (0,71, 11(@)),
the scaled electric field and the magnetic field converge strongly
eE°* = 0 and B®* — b in L>([0,T], (L*(Q))?)

as € - 0, — @ < +oo, where (v,b) € L®([0,T], H*(Y)) is the local strong
solution of (2.9) with initial condition (vg,by).

2.3. Weak convergence for general initial data. In the case where we do not
assume that the limit of the initial fields belong to the kernel of the singular perturbation,
we obtain a weak convergence result.

Theorem 2.3. Let (f©, E“* B%%) be, for every ¢ > 0, > 0, a solution of the scaled
Viasov-Mazwell system (1.4) with initial condition (2.1) satisfying

— Yo 2 ea ea
oM (@, &)dEda+= /6 ES%(x) | da+= / B, (x)—bo|"dx — 0 as e — 0
//1+\/1+7§2 ) | of | of

for some sufficiently smooth vector fields (vy, eg, by) such that div,b, = 0.
Then, for all T < T*, the current density

= /fe’af/\/l + Y2£2dE — nwv in the sense of measures,

the scaled electric field and the magnetic field converge weakly
eE9* =0 and B** — b in L.([0,T], (L*(Q))?)

Loc
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as € > 0, — a < +oo, where (v,b) € L*([0,T], H*(Y)) is the local strong solution of
(2.9) with initial condition

Vin = —Ag(0?1d — Ay) vy + a curly(@®Id — A,) by

bin = —a(a®Id — A,) ™" curlvy + o (a?Id — A,) by
which is the projection of (vy, eg,by) on the kernel of the operator L.

The proof of this theorem involves an oscillating quantity which describes the defect
of strong convergence of the fields due to the more general initial data.

3. REFINED THEORY FOR THE VLASOV-MAXWELL SYSTEM

The aim of this section is to recall the main arguments used by DiPerna and Lions to
prove the existence of renormalized solutions for the Vlasov-Maxwell system (1.4), and
to show that their construction actually yields a solution which satisfies in addition a
conservation law for the momentum (2.6) and a global energy equality (2.7) with defect
measures. For the sake of simplicity, in this section, we will fix €, > 0 and drop the
indices.

3.1. A priori estimates. Consider a sequence (f", E™, B") of approximate solutions
of (1.4,2.1), for instance

§ §
/1_’_7262 f /1_*_,}/262

div,B" =0, €*div,E" =n — /f”df,

o f™ + " (B 4« AB" ).V f" =0

ad,B" + curl,lE" =0, —a€e’0,E" + curl,B" = —a/ Lf”dﬁ,
VEEET
fﬁ:o = fin, E|t o = Ein and Bﬁzo = Bip.
We have the following energy estimate
sup //mf tx§d§+// (E|E™2(t, z) + |B"|*(t, x))dz < +oo,
€[0,T],neN v
as well as the conservation of LP norms for p € [1, 00|
sup / |fMP(t, x, &)dxdé < +oo.
teRt,neN
Then, up to extraction of a subsequence (still denoted by (f™, E™, B™) for simplicity),
f*— finw* — L¥(R", L*(Q x R?)),
(3.1) eE™ — ¢F in w* — LR, L*(Q)),
B" — B in w* — L*(R", L*(Q)).
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Of course, as the previous convergences hold only in weak spaces, we do not have
leE™ |22y = leE |20y 1B 220) = 1 BllZ2(q)

but there exist matrix-valued defect measures ug, pp, a vector-valued defect measure
pep and a subsequence (E™, B™) such that, for all p € C°(Q) and for all 4,5 € {1,2,3}

/ CEP BN o(x)dz — / B, Ep(x)d + / ()i,
(3.2) / BI Bl o(x)dz — / B, Bp(x)dz + / od(15)is,
/ e A B () ds — / e A By(x)ds + / ().

It is easy to check that ug and up are nonnegative symmetric matrices. Moreover, from
the Cauchy-Schwarz inequality, we deduce that

1

On the other hand, the sequence (f"|¢]) is bounded in L® (R, M(2 x R?)). Thus
the sequence

Z/n:/ rf"(t,z,ro)ridr
0

of push-forwards of f™ under the map (¢, z, &) — (¢, , §/|§|) is bounded in L>® (R, M(2x
52)) Hence there exists a subsequence of (f™) such that v™ converges to v in L>®(R*, M(Qx
) weak-*. We next define the defect measure associated to the subsequence (f™) by :

// Y(t,z,0)dm(t,z,0) = // W(t,z,0)dv(t,x,0) ///@/J |§||§|f(tx§)dtd:z:d§

for every ¢ € CO(RT x Q x S§?%). It is easy to check that m is a positive measure.

Finally we are able to characterize the convergence defects of the approximation
sequence through the various measures introduced above (for a more detailed review on
these questions, we refer to [10]). This is the key argument which allows to obtain a
conservation law for the momentum and a global energy equality, provided that we get
a convenient formulation of these conservations for approximate solutions.

3.2. The local conservation of momentum. We have ssen that the following con-
servation law for the momentum holds formally :

o et (| EEEgac) ok o

In particular approximate solutions can be assumed sufficiently smooth to satisfy such
a conservation. Nevertheless the weak compactness inferred from the a priori estimates
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does not allow to take limits in the quadratic terms ; the a priori bounds do not even
allow to give sense to such terms since we have

p,J € L2([0,T], L' 0 L*3()),
E, B € L™([0,T], L*()).

The following formal computations (performed on approximate solutions) provide an
equivalent form for the momentum conservation, which seems to be more adapted for
our job. From Maxwell’s equations we deduce that

pE = (n—édiv,E)E
ajAB= (ac’0,E — curl,B)A B

At this point, we use the identity

Juf*

udivyu = divg(u @ u) + u A curl,u — V, 5

which implies in particular
(2div,E)E = div, | (eE)®* — %|6E|21d +€eE A curl,(eE)
— div, [ (eB)® - %|6E|21’d + B A (—aed,B)
and
curl, B A B = div, <B®2 - %|B|21d>
Replacing in the previous identities, we obtain
pE+ajAB= nE — div, ((eE)®2 — %|6E|21d>
_div, (B®2 - %|B|21d> + cady(eE A B).

Equipped with this identity, we can rewrite formally the local conservation of mo-
mentum

: £®¢E
Oy d§ + divy, ———
(3.3) /ﬁf Srdiv ( 1+ 262

1
fdg) +nE — div, <(€E)®2 — 5|.sE|21cz>
1
—div, <B®2 — 5|B|21d> + €ady(eE A B) = 0.
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3.3. Passage to the limit. Formally we have the local conservation of momentum
(3.3) and the energy equality

1
— dz + = [ (E|EP +|B]*)dz = &
] g tisie s [ @IEE 18R =g,
for all t € R*, so that analogous statements hold rigorously for smooth approximate
solutions. Taking limits in both equations and using the defect measures introduced
in the previous paragraph, we get that the weak solutions constructed by DiPerna and
Lions [4] satisfy (2.6) and (2.7).

4. THE MODULATED ENERGY METHOD

4.1. Description of the method. The main results of this paper are obtained by
a classical energy method. The principle is to modulate the energy of the system by
test functions, and to obtain a stability inequality when these modulation functions are
solutions of the limiting system.

The first step (paragraph 4.2) consists in computing the variation in time of the
modulated energy defined as follows,

€ — |

H (¢ // et 0 5)d§da:+ B — ¢f? d:1:+ B — b2da.
L+ /14922

for every test function U = (v,e,b) € CX(R" x Q, (R*)?) such that div,b = 0. Note

that, in order to get a quantity which is uniformly bounded in the nonrelativistic limit,

we do not work with the energy but with a Lyapunov functional which is computed
from the energy and the global mass

Heoft) = geo(t) i//f“*(t 7, €)de

Pt @, €)deda + - /|6Ew e[2dz + /|Bw b2dz.

//Hm

Moreover, as we expect the limiting flow to be monokinetic and nonrelativistic, we just
introduce a slight perturbation in the kinetic energy.

The second step (paragraph 4.3) consists in establishing a bound on this quantity
involving an acceleration operator that is small when (v, e, b) is a solution of

8tU+U-VU+E+OéU/\b:O
€
1
(4.2) 1 8tb—;&(:url e=20
0ie — —curl b —n— +wvdive =0
e €
div b = 0.
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The last step in the convergence proof is then to study the asymptotic behaviour
of the solutions of (4.2) as € — 0 (depending on the size of «)). For some particular
data, the so-called well-prepared data, the singular perturbation has little effect on the
system, no oscillatory behaviour occurs and we will easily prove a strong convergence
result (section 5). For general initial data, we have to describe precisely the oscillations
and to study their coupling (section 6) in order to characterize the asymptotic behaviour
(section 7).

4.2. Derivation of the modulated energy.

Proposition 4.1. The modulated energy Hf;"(t) satisfies

HE () — HS(0) E[/dm/ (t, 2, 0) 1/}ruﬂ ®) 4 tr(dps?)
43 / /va (W52 (s, 2)da + dv°™ (s, ) ds

peoy — joo
+ / Aoy | b—Bee | deds + RO (0)
e —eBo”

where the fluz terms hy™ and vo* are defined by

co _ [ peal =)@ (€0
N L

1
+[(eE°* —e) @ (eE® —e) — §|6E6’0‘ —e|*1d]

1
+[(B*™ —b) ® (B — b) — §|B€’°‘ — b|?1d),

dv®® = —/ o odm®
0ES? 1
+ldpg” — 5tr(dpg”)1d]
Hdpg” — Str(dug)1d]

the acceleration term A“*(U) is given by

8tv+v~VU+E+ozv/\b
€
1
AYU) = | Ob+ —curl e + (aedie — curl b) A v
€

Oe — —curl b — ne +vdiv e — (€db + curl e) AN v
e €
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and all the correction terms are grouped in a remainder R©% as follows

R [// 1+m | o f] 1+m - e
/ / Dy fe av®v(m 1)dédrds+ / / / £(— 262) Foedvdedads
+ / ocv - (B — e) A (Bf“—b)dwdum]]o
//aeatv (eE“* —e) A (B — b)dz + du%g] dxds

o[ i) _7/ [[ oot~ [ [ D oo

Proof. The previous identity is obtained by a direct computation of the time derivative
of the modulated energy. We first rewrite

() = //Hm*’“’adé //ijiiyzg?fwdfdw

Feodeds + - /(|6Ew o + |B% — b2)da

// 1+ 1+72£22
- ] g

// - mffa dédr + = L /((e2 — 2¢E9%.€) + (b* — 2B%“.b))dw

By (2.7), it follows that

H(6)+ //dm t,z,0) + 1/(tr(du +tr(dug”™)) — H;*(0)

_ / ; //Ugfeadgdxdﬁ [ [ s
/ dt // 1 m — 1) fo*dédxds
/ dt // 1+m - %)fe’adédxds

€,&x €,&x b2
/dt/ —eE© €+5—B b+ — )dxds

Denote by C; the first part of the remainder

o) e deds

N Y [ —
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Recall that poo — [ foode, joo — [ feogdg and joo = [ fooe/ /T4 72€2de. Then,
1
H (1) + / / Ame(t,7,0) + 5 / (b (s + tr(dps®)) — Hﬂa(())
/ / 0w + v0 %) dxds + / / petvov + th€ Ydxds + C
t
/ (Dre(e — eB) + b(b — B))dads — / (eD,(¢E**) + b3, B*)dds.
0

From the local conservations of mass and momentum (2.5,2.6), we deduce that

HS (t //dm”‘ (1,2, 0) 1/(tr(duE +tr(dps)) — HS(0)
= / / Eaﬁtvdxds+/ /peo‘vav— —div, %) dzds + Cy + Cy
. E®¢
+ v | divy | —————7F"d¢ + F*% | dzds
/0 / ( V14 72€2 )

(73,5 / odm®® + div, / o® adme’a>

i 1
/ /U (—dlvx dpz* — —tr(d,u;;a)fd) div, (dpy™ — tr(du%™)Id) + eaatduz’ofg>

+

+

0

/.1

= —// fo‘@vdxds%—//pmv&v%—Dv U®f°‘)da:ds—|—02+(]1
///D S f€ad§dxds+//v Fedrds
\/1+7§2
—l—’y[//vadm”‘] —fy/ //@vadmeo‘ // D,v:0® odm®*

//va (duE +duy” — —tr(dpg” + dp” )I>

+ea [/v duEB] —ea/ /3tvdu

t
/ / (Ore(e — eE“*)e + Oyb(b — B9%))dxds — / (€0 (eE“Y) + b0, B“)dxds,
0

+

t
(Oie(e — eE“Y)e + 0ib(b — B9Y))dxds — / (€0 (eESY) + b0, B“*)dxds
0

O

O

where the force field F“* equals

1 1
PO = nB —div, (eB*" @B —|eB>" [ Id) ~div,(B“"®B“" | B> "1d)+cad,(cE*" AB*")
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and the second part of the remainder C} is defined by

/ / ) Qudads = — / / / 62) Ferdudeduds.

Then, by Maxwell’s equations, we obtain

1
Hga(t)—*— // de,a(t xT O—) -+ 5/(tr(d/J/EE’a+t7"(d/,L%a)) o He,a(o)
= // Eaavd$d8+//pfavatv+Dv 'U®]€a)d1'd8+02+01
///D 0% feadédafder// - Fo%dzds
Vitre
+7{//vadmea} —7/ //&vadmea // D,v: 0 ® odm®

//va (duE +duy” — —tr(dpg” + dp” )I>

+ea [/v duEB] —ea/ /3tvdu
0

t

n / / (Buee — €E°)e + Ab(b — BY))dads

! 1 1- 1
—/ ( <— curl, B®* + ] > +b (—— Curlere’o‘>> dzds,
0 Qe Qe

which can be rewritten
(4.4)

1
H(?a(t)_f— // dme,a(t7z‘,0') —+ 5/‘(t7ﬂ(dﬂ/2‘a _{_tr(dluféa)) o Hga(o)
t t
_/ /5e,aatyd:l}d8 _|_/ / pfaavatv + va v ®j€’a)dxd8 + 03 + 02 4 Cl

[ [ ( J%fwdgmw) o [ [ peoue

/(8te(e — eE“Ye + 0,b(b — B“*))dxds

/Ot 1 1. 1
—/ (e (— curl, BS* 4+ ] > +0b (—— CurlmﬁEe’a>) dxds,
0 Qe Qe

introducing the following groups of defect terms

1
dvo® = / o ® odm®* — (du%a +dpy — §tr(du2€a + du%o‘)fd>
gES?
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t t
=7y [//v.admf’o‘] — 7/ / ov.ocdm”
0
t ° ¢
+ ex {/v.du%%] — ea/ /&tvdu;ﬁ;
0 0

The second step of the proof consists in introducing systematically the modulations
E—v, 19% = p-%, eE9* — e and B — b in order to get the structure of the right hand
side in (4.4).

o [[ am (tm)+; [t + ertaniy) — Hi 0

and

8tvda:ds+/ /Dv v ® j%xds 4+ Cs + Cy + C

[ Ji-

/ / D, - ( / % f“adéda:ery“a) ds + /0 / v FoCdrds
< Jo

[/

re(e — eE9Y) + 0,b(b — B9?))dxds

€

/ / (— curl, (eE“* — e + e)) dzxds,

which can be rewritten

(4.5)
Hé’a(t)—i— // dmf’o‘(t X O’) + % /(tr(dluz;a +t7«(d“%0¢)) _ HEQ(O)

1
(— curl,(B®* — b+ b) + —(] o — % + p““v)) dxds

1
<8tv+(vV)v+ e+ava) dxds + Cy + Cy + C

v)®2

\/1+7 £?

Jue
Vs
/ (F 4 ZpSe — O A b> dxds
Je
e

S feadedy + dve | ds + Oy

— eE%) (@e - curl b> dxds

(679

1
— B9%) (@b—i— — curl e> dxds,

with

Cy = // D,v : f“J‘UQZ)v(\/ig2 1)dédxds.
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It remains then to deal with the nonlinear term

1 .
Feo _ _pe,ae o aje,a AD
€

1 1
= —div, (B ® B — S|eB"['Td) — divy(B** @ B — 5| B*""Id)

1 5
+ eady(eE“ A B9%) + nE® — = p°% — aj“* A b.
€
It becomes when we introduce the modulation

1 5
Feo _pe,ae - aje,a Ab
€

1 1
= —div, ((eE5* — e)®? — §|6E€’O‘ —e|*Id) — div,((B** — b)®? — §|BE’“ — b*Id)

1 1 .
(eE“Y —e) A (B —b)) + —n(eE“* —e) — =(p“ —n)e —ay®* Ab
€ €

EE“®e+e®eE" —e-eE9YId)
B“®b+b® B* —b- B°"Id)

1 1
€2 — < le Td) + div, (b2 — b 1d)

+6a(8te A(BY" —b) + (eES* —€) AOb + e AN O,BY™ + 0, (eE“") A b)
Using the relation
divy(a®b+b®a—a-bld) =div,(a)b+ div,(b)a + curl,(a) Ab+ curl,(b) Aa

leads to

1 A
Fe® _ _pe,ae o aje,a AD
€

1 1
= —div,((eE5* — e)®? — §|6E€’O‘ —e|*Id) — div,((B** — b)®? — §|BE’“ — b*Id)

1 1 A

+ ecad((eE“Y —e) A (B — b)) + —n(eE“ —e) — =(p°* —n)e —aj°* A b
€ €

— div,(eE9%)e — div,(e)e E°* — curl,(eE“Y) Ae — curle A e B

— curl,(B“*) Ab— curl,b A B®

+ ediv,e + curl,e Ae+ curl,b A b

+ 6@(3t6 A (B =b) + (eE“* —€) AOb) + e N OB + 0, (eE“") A b)
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or equivalently

1 .
Feo _pe,ae _ Oéjf’a Ab
€

1 1
= —div,((eE%* — e)®? — §|6E6’°‘ —e|*Id) — div,((B** — b)®? — §|BE’“ — b*Id)

1 1
4 ad,((eBS — e) A (B — b)) + —n(eES* —¢) — - (pw 4t eZdivaf’o‘) e
€

€

— divy(e)(eE* —€) — ( curl, (e E%) + eaatBe’o‘) Ae— curlze A (eE“" — e)
+ ( — curl, (B + 0,(2aE%%) — a}'f’a) Ab— curl,b A (B —b)

+ e (8te N (B —b) 4 (eE“% —e) A 8tb)

By Maxwell’s equations, we finally obtain
(4.6)

1 A
Fe® _ _pe,ae o aje,a AD
€

1 1
= —div, ((eE“* — e)¥? — §|6E6’°‘ —e|*Id) — div,((B“* — b)®? — §|Bw — b|*Id)

1
+ GOéat((GEE’a — 6) A (Be,a — b)) + _n(GEe,a . 6)

€
v (€) (€ — ) — curlye A (B9 — ) — curl,b A (B~ )
+ e (8te VAN (Be’a — b) + (EE'QOA _ 6) A atb))

Plugging (4.6) into (4.5) provides then

1
Hfa / / dme(t,7,0) + 5 / (br(dps® + tr(dps®) — HS(0)
1
(atwr( V)v+;e+av/\b>dxds+C'3+Cz+C'1
—v)®?
\/1+7 £?

=] Jo-
[ f o
ﬁA/Dw:0£w—d@—;£w—d%®+ww—®@—QF”—WM>M@
L/
L/

—— 9% &dr + dyg’a> ds + Cy + C

1 1
(e — eE5Y) (@e — — curlyb — —nv +vdivge + v A curlye + aev A 8tb> dxds
e €

1
(b— B9%) <8tb + — curl,e + v A curlyb — eav A 8te> drds,
e
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where
t
C; = ea/ /U.@t((eEe’o‘ —e) A (B“Y —b))dzds
0

t t
= e [/v((eEe’a —e) N (B — b))dx] - GOé/ /8tv.((eE€’a —e) A\ (B“Y —b))dxds.
0 0
Checking that R%* = C + Cy 4+ C5 + Cy + C5 concludes the proof. O

4.3. The stability inequality.
The particular structure of the identity established in the previous Proposition (4.1)
allows to prove the following stability inequality.

Corollary 4.1. The modulated energy H;*(t) satisfies the Gronwall inequality
1
Hp*(t) + / / dm®*(t,x,0) + 5 / (tr(dug” + tr(duy®)
t

< " 0)exp (6 [ [Dsolimdr ) +00) +0(e)

' s pe,av . }'e,a
+/ exp <6/ ||D:L='U||Lood7_> /AE’O‘(U)- b— B | dxds.
0 0 e — eEo”

Proof. This corollary is based essentially on the control of the relativistic corrections
which are expected to converge to 0 as v — 0. With the notations of the previous
paragraph, we have

(4.8)

2
(G ||U||Lw//1+\/7ﬁ|vwf€’adxdf
/€] e
+||v||ioo//2(1+ 1+72|§|2)f dzd¢

2 I VA R P
rViTre | |[lryvireg| it it e
Since the global mass and the energy H“® are conserved, we get by Cauchy Schwarz
inequality

because

C1] < Cany(Ilvllzee + [VlIZo0)-
In the same way, we obtain for all ¢ € [0, 7]

! 271€)? (o
Cl < lulle [ [ — feedudgds < 2T Coun||00t] 1,
0

VT T

and finally

' 271¢ o
<Dl ol [ [ 2L peedudgas < 2TCuc |90 1 ol
0

VT
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Then this part of the remainder R“ satisfies
1] +[Ca] + |Ca| = O(y)

where the constants depend only on the initial mass and energy, and on the WH>(R* x
Q) norm of v.

The second step of the proof consists in estimating the other terms in the remainder
R%*. By the energy inequality,

|C3| < 29ym&*(Q x SH)||v]|pee + YT M (2 x S)||0pv]|1
+2ea|pp|()||v]| e + €T |prp|(2)[|0w]| Lo
< ACu(ea+7) ([[v[re + T'[|Opw]| L) ,

|C5| < 2ael||eESY — el|pz|| B = b||12]|v]| o + aeT||eE“Y — e||p2|| B — b||12]|0w]| Lo
S 4Cm€ (||U||Loo + T||at7}||Loo) R
from which we deduce that
|C3] + [Cs] = O(7) + Ofe)

where the constants depend only on the initial mass and energy, and on the WH>(R* x
) norm of v.

Then, in order to apply Gronwall’s lemma, it remains to prove that the flux terms
hy™ and v® can be controlled in terms of the modulated energy

1
Hga—i-// dm®® + §/tr(du%a+du§§a).
ea \S Y] €, |§_U|2
/f <6//f 6zdfd:l:,

1
(B — ) — LB — ePId] s < 3/ (B — o[2dz,

We have clearly

and .
(B — 1) — 2B — b Il <3 / Be® — bde,

from which we deduce that
Ihg e < 6Hg®.

In the same way, as g and pp are non negative symetric matrix

/ lo ® odm®®

€,0 1 €,0
[ = St 1) < st (us) (@),

o x 5),
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€,&x ]' €,
[ 1 = Seraui) ] < st (ua)(@),

1
Q)§f3([/dnﬁ“+7§/Qrwu§”+dugﬁ>.

Thus, applying Gronwall’s lemma concludes the proof. 0]

so that

v®

5. STRONG CONVERGENCE FOR WELL PREPARED INITIAL DATA

In this section we restrict our attention to initial data for which solutions of (4.2) do
not present any fast oscillation (nonnegligible in norm).

Indeed, we suppose that the initial data (vg, eg, by) belongs to the kernel of the singular
perturbation, i.e.

1
€y = 0, nvy + E Curlxbg =0.

Since ey = 0, we modulate H“*(t) with U, = (v, ee,b) instead of U = (v,0,b). We
obtain a similar result but in a more precise form wich will be useful in the sequel.

Then we expect that any solution (v, e, b) of (4.2) with initial data (vg, 0,by) behaves
asymptotically as € — 0 as the solution (v, 0, b) of

ov+v-Vo+e+avAb=0
1
(5.1) Ob+ —curle =0

nv+ — curlb =0
o

where e ~ e/e is the Lagrange multiplier associated to the constraint nv + é curlb = 0.
In particular, if the following convergence holds

— Vo , 1 2 6 1 _ 2
//l—l-mm xﬁ)dﬁda:+2/e|Ez (z)]2dx + = /|B () — bo|*dx

= H5*(0) =20,

which means that

e the initial velocity profile is essentially monokinetic;
e the initial fields converge strongly;
e and the limiting fields belong to the kernel of the singular perturbation;

then we expect that

~
€,

7O~ PN — n;
eE" ~ e — 0;

B ~ be o — b;
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where p©®, j5® are the density and momentum associated with any solution of (1.4),

(Veas €c,a» De,o) 18 the solution of the asymptotic system (4.2) and (v, b) satisfy the mean
field equation (5.1). The mathematical formulation of this result is given in the following

Proposition 5.1. Let (f;%)c.a be a family of nonnegative functions of L' L*(Q x R?),
and (E5%) c.ar (BiY)e.a be two families of vector fields of L*(Q) satisfying the compatibility
conditions (2.2) for some constant n and the uniform energy bound

sup H*(0) < +oo0.

€,a

Assume that there exist two divergence-free vector fields vy, by € H*(Q2) (for s > 2+3/2)
such that

1
nvg + — curlyby = 0,
Q

_'UU ea ea ea
Jii(x, §)dedz+ - / E.” dr+— / B, (x)—=by|"dx — 0 as e — 0.
//1+ Y E@r | of

Let (fo®, E9% B%%) be, for every e > 0,a > 0, a solution of the scaled Viasov-Mazwell
system (1. 4) wzth initial condition (2.1). Then, there exists T > 0 such that the current
density 79 = [ fo/\/1 +72E2dE converges weakly in L>([0,T], L' (Q)), the scaled
electmc field eE<* and the magnetic field BS® converge strongly in LY ([0, T[, (L*(Q2))?)

to (nv,0,b) as € » 0, — & < +o0, where (v,b) € L*>([0,T], H*(2)) is the local strong
solution of (5.1) with initial condition (vo, by).

In other words, this result shows that

e the space Ker(L,) is invariant under the flow of (4.2) (up to corrections of higher
order in €) : if the initial data belongs to Ker(L,), then the solution of (4.2) is
close to Ker(Ly,);

e the mean field equation corresponding to (4.2) (i.e. its projection on Ker(L,))
is (5.1);

e for well-prepared initial data, the strong convergence of the fields and the monoki-
netic profile are preserved : more precisely a convergence result such as (5.2)
holds for all ¢ > 0.

The proof of this result is based on the Gronwall’s inequality obtained in the previous
section, and on the study of the limiting system. Indeed, if we were able to exhibit a
smooth solution U, o = (Uca, €ca, ben) Of (4.2) for all €, > 0, then we would have

A“Y(Ueo) =0
and by corollary 4.1, U, , would give a good approximation of ( 9%/ po, e B9 B9Y).

5.1. Theory for the limiting system. The first step consists then in characterizing
the asymptotic system (4.2), and more precisely the associated mean field system (5.1)
(since initial data are well-prepared).
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Lemma 5.1. Let vg, by be two divergence-free vector fields of H*(Q) (s > 1+ 3) such
that

1
nvg + — curlyby = 0,
Q

for some homogeneous n. Then, there exist T* €]0, +o0] and a unique (v,b) € L2 ([0, T*[, H®)
solution of (5.1).

Proof. 1f n is homogeneous, because of the constraint,

1
div,v = ——div,( curl,b).
an
Then,
0y curlv + (v - V) curlv — ( curlyv - Vp)v 4+ curlye + « curly (v A b) =0,
and

curl, (v Ab) = (b- Vy)v — (v- V,)b.
Let us introduce
w = curl,v — ab.
The system (5.1) can be rewritten
w+v-Vw—w-Vo=0
— Av+ a®nv = curl,w
nv + é curlb =0, div b = 0.
Consider the mapping
M:veH—v=DM(v) € H’
where v is defined as the solution of the elliptic equation
A7+ a*nv=w
and w satisfies the following transport equation
ow+v -V, —w-Vyo=0.

For s > 1+ 3/2, and for T sufficiently small, we can prove that M is a contraction.
Therefore, the existence results are the same as for the incompressible Euler equations.
O

If n is not homogeneous, the limiting system is much more complicated and we do
not have any existence result for strong solutions. However, we should have a weak
convergence result if we introduce a notion of dissipative solutions for the limiting
system. From now on, we assume that n is homogeneous.
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5.2. Weak compactness results. In order to get the asymptotic behaviour of the
macroscopic quantities (54, eE%%, B*), we have first to establish the relative com-
pactness of the families.

From the energy inequality we deduce that

Sup [|eE° || oo (m+ 12(0)) < 00,

€,Q

sup || B

€,

|%<>°(R+,L2(Q)) < +0o0,

sup sup foYdxdé < +o0,

62
e,a tcR+ // 1+ \/1 —{—’}/262

while the conservation of mass provides

// foYdxdé = n|Q)|.

Then we obtain a uniform bound on j“* by interpolation

1/2 9 1/2
< (/ fe’ad:z:d§> (/ 1+ 22 _ﬁy%?ff’adxdf)

< (/f dxd§> (/1+ %14—7252”]6 dxd§>

which implies in particular that

“e,a
7©

sup |7
€,

|Loo(R+,L1(Q)) < +00.

Up to extraction of a subsequence, we then have

e oY% E, B¢ —~ Bin w" — LOO(R+5 LQ(Q))

~
€,

Pt — p, 9% — j in the sense of measures.

Moreover, using the Poisson equation, we obtain that

p=n.
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5.3. Convergence results. Let (v,b) be the solution of (5.1) with initial condition
(vo, bp). Comparing both systems (5.1) and (4.2) shows that U, = (v,ee,b) is an e-
approximate solution of (4.2), and more precisely that it satisfies

ov+v-Vo+e+avAb

1 2
A5 (U,) = Ob + &Curl e+ (we®0ie — curl b) Aw
e0ye — —curl b — n? + evdiv e — (wedyb + ecurl e) A v
e €
0
= | (ae®0e) Av

e0ie + evdiv e

As e = —(0w + v+ Vyu+ av Ab), it is uniformly bounded in W([0,7] x ). Then,
since [[ dm®*(t,x,0) + 5 [tr(dpg”) + tr(du”™) > 0, plugging this last identity in the
stability inequality (4.8) leads to

Hy*(t) < Hy?(0) exp(6 /Ot [1Dz0(s)|ds) + O(v) + O(e).
The assumption on the initial data gives exactly
H;*(0) = Hj%(0) + O(e) — 0,
with U = (v, 0, b), from which we deduce
Hp*(t) = 0 as e = 0,

or equivalently
H;%(t) - 0ase—0
for all t < T* where T* is the lifespan of the strong solution of (5.1). In particular,

eE“* — 0, B — bstrongly in L*([0,T], L*(Q2)).

To get the convergence result on the current, we use a - by now standard - argument
of convexity. Define

~

Je, o, a6,00|2
hz,a(t) — K(je,a - Uﬁe,a; ﬁe,a) — / |] _ vp dz
pe,a
with
1
K(m,o) = / sup = < o(t,n);|b(t, )| > + < m(t,z);b(t,z) > dadt,
beD([0,T]x Q)

and

1
A6 6 e
g /\/1+72§2f )
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From the Cauchy-Schwarz inequality we deduce that

2 (g_U)Z €, 1+ V 1 +72§2 €,
: (/Hmf dg) (/ Ty dg)

~E,Q

79 — vp

and consequently
he(t) < 2HE (D).

Note in particular that 79 — p“*v — 0 strongly in L=([0, T], L(Q)).
On the other hand, it is easy to check that

p"G,a % n

in the sense of measures. Indeed, the relativistic correction p©* — p“® can be estimated
as the remainder C, in section 4.3. Then since K is lower semi-continuous for the
convergence in the vague sense of measures

S 2
/ =m0 < timbeo (f) < mHS (1) = 0
n
which proves that j = nwv.

The uniqueness of the limit point ensures that the whole family (7¢*, eE®, BS®)
converges strongly to (nv,0,b).

6. STUDY OF THE SINGULAR PERTURBATION

In view of the previous results, for general initial data, we expect (j’e’a, eE5% B9%) to
behave as the solution of the following singular system

8tv+v-Vv+E—|—cw/\b:0
€
1
(6.1) 1 8tbj;acurle:0
oe — —curl b — — +vdive =0
Qe
div b =0,

that is to oscillate under the linear penalization L around a mean state satisfying (5.1).
(Recall that we restrict our attention to the case where n is constant, and for simplicity
n=1.)

In order to obtain a complete description of the asymptotic, we will first describe
the oscillations generated by the singular perturbation and then, we will check that
generically the oscillations do not bring any contribution in the evolution of the mean
field.
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6.1. Description of the oscillations. Define the linear operator S

div,v div,e
div,ze —div,v
(6.2) S curl,v — curle
curl,e LAb — curl,v
(—A)Y2b 1(—A,)"? curl,e

that is a variant of L which has a simpler spectral theory. Describing the oscillations
generated by the linear penalization requires a good understanding of the structure of
S and in particular a precise description of its kernel.

Lemma 6.1. Consider the bounded antiselfadjoint operator S defined on L*(2) by (6.2).
Then,

e for all k € Z3, the symbol Sy of S admits the following purely imaginar eigen-
values

(6:3) As(k) =0, )\4(k):u/|l(i—|22+1, A5(k)=—i\/|l;—|22+1,

with the notation k> = ’;—i + Z—§ + ’2—5

1 2 3
e the projections Il ; (j € {1,..,5}) on the eigenspaces of S are bounded uni-
formly in k € Z3. In particular, the projection on the kernel of S is the pseudo-

differential operator P of order 0 defined by

0 0
0 0
P = (—A,)(a?Id — A,) ™! 0Id —a(—A,)*(a?ld— A,)™?
01d 0ld 0Id
—a(=A) 2 (a?Id — A)™' 0Id o?(a?Id — Ay) ™

)

e the group of isometries S generated by S preserves all Sobolev norms.

Proof. As S is a linear pseudo-differential operator with constant coefficients, a natural
idea to study its spectral properties is to consider its symbol, i.e. the following block
diagonal matrix

Sy = 0Id Id 0Id
~Id 01d %14
0rd ™14 01d

where Id denotes the identity of C3.
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e In order to describe the oscillating modes, it is enough to consider separately each
block. The eigenvalues of
0 1
-1 0

are 7 and —i which we denote by A;(k) and A\y(k). The eigenvalues of
0

e}

are A\3(k) = 0, \(k) = i\/‘fé—!; + 1 and A\;(k) = —iy/“%z + 1. As all eigenvalues are

purely imaginar, it is easy to check that Sy generates a group of isometries (exp(tSk)icr)-

e To obtain the projections Il ; (j € {1,..,5}) on the eigenspaces of Sy, we have to
compute the eigenvectors and the transfer matrices, which is a technical step performed
in Appendix A. Then the explicit formula for II; ; shows that its norm is uniformly
bounded with respect to j and k : in particular, the projections are pseudo-differential
operators of order 0.

e The projection on the kernel of S satisfies for all k € Z3

0
! |k 1
Pe=Is=| 14 <0,0, — L 1d,01d, Id) ,
01d @
Lrg
Then,
0
0
P=| —(=A)Y*a*Id — A,)7Y2 | (0,0, —(=A,)2(aId — A,)7?,01d, a(a’Td — A,)™?)
01d
afa?ld — A,)~'?
which concludes the proof. O

Lemma 6.1 shows that the linear part of the system (6.1) generates a group of isome-
tries S. Conjugating the equations (6.1) by S allows then to remove the fast temporal
oscillations. Indeed we introduce the new variable

(6.4) W, = S(E)Ue

which is expected to have uniformly bounded time derivatives.
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Lemma 6.2. Let U¢ = (divyve, divgeS, curlyv®, curlyet, (—Ag)Y2b) where (ve, e, b°)
is a solution of (6.1). Then the vector field W€ defined by (6.4) satisfies the non-
autonomous system of nonlinear equations
t
(6.5) oW +Q(-, W W) =0
€
where the operator @) is defined by its Fourier coefficients
VkeZ? Qu(t,V,IV) Z Z exp(twy, (k; l;m))s, (k; l;m)) VW,
I+m=Fk ne[[1;5]]
with
(6.6) wn(k; s m) = Ap (k) = Apy (k) = Ay (F).
Moreover, the tensor s,(l +m;l;m) satisfies
|sn(l +m; ;m)| < C(|I] + [m])
for some non negative constant C' independant of | and m.
Proof. We can rewrite the equation satisfied by U€ in the following way
1
(6.7) U+ -SU 4+ R(U%U) =0
€
where R is the symmetric bilinear operator obtained by polarization of the quadratic

forms

divy(v - Vv 4+ av A D)

div, (vdiv,e)

(6.8) R(U,U) = | curl,(v-Vv+avAb)
curl, (vdiv,e )

where U is the vector field of coordinates (div,v,div,e, curlv, curlye, (—A,)"/?b), and
S is the linear penalization defined in Lemma 6.1.

Conjugating (6.7) by the group S provides
s(hor + %S(E)SUG +SCRUST) =0,
or equivalently
2SI + SCRUST) = 0.
Then
W+ SRS W S(—)W) =0,
which can be rewritten on the Fourier side

—t
ath+sk ) Y Rim[Si(— WZ,S(G)W,;]:O
I+m=k
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where Ry, are the Fourier coefficients of R. By definition (6.8) of R
| B | < C (] + [m]).

In order to describe explicitly the dependence with respect to time, we decompose
the penalization according to the different modes. From Lemma 6.1 we deduce that

M(k) 0 0 0 0

0 Xa(k) 0 0 0
Sc(t)=P;'| 0 0 As(k)Id 0 0 P

0 0 0 M(k)YId 0

0 0 0 0 As(k)Id

where Id denotes the identity of C3. Then

t
AWt > D exp(cun(h,m))sy (k, Lm)[Wis W] = 0

I+m=k ne[[1;5]]®
where the phase w is defined by
wn(k, Lym) = Ay (F) = Ay (1) = Agg (m)
and the tensor s satisfies
sp(k, U, m) (Wi W] = Ty, R [T, Wi Ty s Wi ).
Since ||II; ;|| < C and |Ry,| < C(|I|+|m]), we check that |s,(k,1,m)| < C(|l|+|m]). O

Lemma 6.2 seems to indicate that W€ as well as its time derivatives should be uni-
formly bounded with respect to e. Such a result would imply in particular that (up
to extraction of a subsequence) the family W€ converges strongly to some W, which is
supposed to solve the following limit system

(6.9) oW +QW, W) =0

where the autonomous bilinear operator (V,W) — Q(V,W) is defined by its Fourier
coefficients

(6.10) VEeZ', Qu(ViW) = D sk 1m)[Vi; Wal,
I+m=k
wn (k,1,m)=0

the other terms converging weakly to 0 because of fast oscillations (formal time averag-
ing).

Of course, we are not able to justify directly such an asymptotic. The idea consists
then in describing precisely the formal limiting system (6.9) and then in constructing
approximate solutions to the original system (6.5). A stability result will then allow to
conclude.
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6.2. Description of the resonances. In order to characterize and to obtain precise
estimates on the solution W of the system (6.9), the first step is to understand its
structure, in particular the type of coupling produced by the quadratic term. We start
by a precise description of the resonances.

Lemma 6.3. Foralln € {1,..,5}* and all k,l,m € Z?, define w,(k,l,m) by (6.6). Then
there exists a set A C (R})? of Lebesque measure zero such that for all (ay,as,a3) €
(RY)*\ A,

o w,(l+m,l,m) =0 implies that m =3 or e =3 orns =3

b le(l + malam) =0 with m = 3 = {772,7]3} - {172} or {772,7]3} - {47 5} or

=13 =23;

o w,(l+m,l,m)=0 withn, =3 = n =n;s;

o w,(l+m,l,m) =0 withn; =3 = n =n.
Moreover, if w,(l +m,l,m) # 0,
(6.11) jwn (I +m, L,m)[~" < C(L+[I])°(1+ |m])’,
for some nonnegative constants C' and s depending only on (ai, az, as).
Proof. The results concerning the resonances, i.e. the solutions of the dispersion equa-
tion

wy(l+m,l,m) =0

come from algebraic properties of the functions k — \;(k) defined by (6.3) : the main
argument is the small divisor estimate stated in Appendix B.

We expect all resonances to involve generically at least one zero eigenvalue. To
establish such a claim, we consider

Q(l, m) = Hn€{1,2,4,5}3 wn(l + m, l, m)

By (6.6), ¢({,m) is a polynomial with respect to the variables A;(k) ( for j € {1,2,4,5}
and k € {l,m,l+m}). Considerations of symmetry ensure that it is actually a polyno-
mial with respect to o;(k) (j € [1,4],k € {l,m,l +m}), where (0);cp 4 are the sym-
metrical functions associated to (A;) eq1,2,4,53. Computing these elementary symmetrical
functions shows that (I, m) is a polynomial with respect to |/|?, |m|? and |l+m|?. Then
there exists a polynomial P such that

o1 m) :p<l_1,l_2 ls mzz)
By Proposition 9.1, there exist a set A C (R])? of Lebesgue measure zero and Q C Z5
such that for all (a1, as,a3) € (R%)*\ A, 3(C, ),
V(l,m) € Q, q(l,m) =0

(6.12) V(I,m) € Z8\ Q, |g(l,m)| "t < C(1+ [I)*(1 + |m]|)*
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In particular, as |w, (I +m,l,m)| < 3(1+2) (1+|l|)(1+ |m]) for all n € {1,2,4,5}3
and all [, m € Z3, this implies

V(l,m) € Z°\ Q, ¥y € {1,2,4,5}%, [w, (I +m,l,m)[ " < C'(1 4 [I))* (1 + |m|)*

for some nonnegative constants C’ and s'.

It remains then to prove that Q = (. Consider (I,m) € Z®. If 5, n, and n3 are not
equal to 3, A, (I +m), A\, (I) and A, (m) tend to 1 or -1 as ay, as, ag — +00. Then, for
all n, wy, (I +m, 1, m) converges to an odd number as a;, as, a3 — +0o. Thus ¢(I,m) # 0
and (I[,m) ¢ €. Then (6.12) provides the first assertion in Lemma 6.3, i.e. a necessary
condition for having a resonance.

In order to complete our characterization of the resonances, we have then to consider
the cases where (at least) one of the eigenvalues is zero. By a symmetry argument, it is
enough to study one case, for instance 7, = 3.

Then, w,(l + m,[,m) =0 if and only if

)‘772 (l) + )‘773 (m) =0,
which is obviously equivalent to the following
® )y =13 =3;
L {772a773} = {L 2}7
o {m,m}={4,5} and [I| = |m|.
In order to obtain an estimate for |w, (I +m,I,m)|™" when \,,(l) + A,y (m) # 0, we

compute it. If A, ({) and A, (m) have the same sign, |w, (I +m,{,m)| > 2. If they have
opposite signs,

e cither |w,(l +m,[,m)| = ‘ 14—&—‘22 — 1‘ > C,
e or |wn(l+m,l,m)|:‘ 1—1—@—2'2—1‘ > C
o or |wy(l +m,l,m)| = [y/1+ Li—'; —\/1+ |Z”2|2 >C+ )T+ |m]) Y
where C' depends only on aq, as, as. 0]

Note that the mean-field, that is the projection of W on the kernel of S, seems to play
a particular role. In the sequel, we will denote W this projection and W, = W — W.
Of course, W,,. does not depend on €, but we call it the oscillating part of W since it
gives the oscillating part of U :

W =W,
!
€

U=38(-

N | o+

Uosc — S( )Wosca

should be respectively the weak limit of U¢, and the oscillating part of U® which describes
exactly the defect of strong convergence of U to U.
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6.3. Structure of the limiting system. Equipped with the previous result on the
resonances, we are now able to analyze the structure of the limiting system. More
precisely, we will prove the following

Proposition 6.1. There exists a set A C (R})? of Lebesgue measure zero such that for
all (a1, az,a3) € (RF)*\ A, any solution W of (6.9) can be decomposed in

W =W + W,
where W solves a locally well-posed nonlinear autonomous equation (which is more or

less equivalent to the limiting equation (5.1) under a convenient change of variables),
and W is governed by a linear system of equations whose coefficients depend on W.

6.3.1. The mean-field equation. The mean-field W is the projection of W on the kernel
Ker(S), which means that

Wk — Hk,gwk.
Then from (6.9) we deduce that
OW i, + I3 Z Sp(k; l;m)[Wis Wi,] =0

l+m=k,n€([1;5]]3,
wn(k,l,m)=0,

or equivalently

(6.13) OWr+ Y. sk lm)[Wy W] =0

I+m=k,n€e[[1;5]]3,
wn (k,1,m)=0,n1=3

By Lemma 6.3, we know that
wy(k,l,m) =0 with A\, (k) =0

if and only if {na,n3} = {1,2}, or mp = 3 = 3, or {m, 3} = {4,5} with [l| = |m],
Then (6.13) can be rewritten

oW i, + Z 53’3,3(k;l;m)[W};Wm]

l+m=k
= - >, Sy (k5 b m) Wi W] — > Sy (k5 1;m) [Wi; Wiy
I+m=k, l+m=k,|l|=|m|
{n2,m3}={1,2},m =3 {n2.m3}t={4,5},m1=3

Let us then introduce the coordinates of W, in the following basis of eigenvectors

1 1 0 0 0
i — 0 0 0
We=1| 0 [pm+| 0 [wm+ %Z‘[d o+ | I [+ | LD |,
0 0 07d —i1d 11d
— |kl —|k|
0 0 L1d 4 1q L 1q
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where pig, v € C and ¢y, xx, ¥r € C?. Note that, since W is real-valued, W} = W,
and
He=Vk Yp=x1&k and ¢p=09 .

Moreover, with these notations, we have

0

0
We=| 201d | ¢

01d
L1d

The problem is now to determine the equation for the vector-valued coordinate ¢ :
L= 10,0, ﬂ]d 01d, —Id Wr=10,0, ﬂ]d 01d, —Id Wy

By definition of s,(k,l,m), we have

at¢k+<oo |)\|Id OId—Id> > Rin[W, W,

l+m=k

— Ikl
<0 0, oy, 1401 )\—kId D Rin[yy, Wi, Tl s W]

I+m=k,
{n2,n3}={1,2}
=kl
0,0, [dOId—[d Ry 10, Wi I Wi
< )\ )\k l;k { [ lmz l PUE ]
{n2m3t={4,5},  li|=Iml
which can be rewritten
0 0
|k| 0 0
B+ 0,0, 1d,01d, - Id ST R || s Id || Z2Id || @b = —T~T
" a D A aAm
k=l+m 0Id 01d
L 1d L 1d
where
1 1
T,g“’:2<0,0 -~ Id, OIdA—Id> > Ry || 01d || 0Id || puvm
@ k k=ltm 01d 01d

0Id 0Id
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0 0
" 1 0 0
Tﬂ:z(o,o,_m,om,—m) > R || x4 || 14 || i ®dme
N A k—ltm —i 1d 11d
Ik B
I rd g

Note that we only need to compute two (vector-valued) components of Ry,,.
A symmetry argument (developped in Appendix C) allows actually to prove that

both terms 7} and T,z“p vanish, so that ¢ satisfies an autonomous equation.

Keeping only the terms involving ¢, we get

—|k] . —iU NG\ . [(—im A Py
k . —
Oude + a\g A k:zl_;m allln " alm|A,

*“( allln )A |m|Am} =0

From this equation, we can deduce the equation satisfied by the mean field

0 0
0 0
U=W=| —(-A)?(?Id—A,)"Y?¢ | = | curl,®

0 0
ala?ld — A,) Y?¢ (=AYb

which is exactly the limiting system (5.1) obtained for well-prepared initial data :

(6.14) Oy curl,v — ab) + curl,(v.V,v + av A b) =0

since ( curl,v — ab), = —%qﬁk.

6.3.2. The equation for the oscillating part. By definition, the oscillating part W,,. of
W satisfies W,,. = W —W where W = PW is the projection of W on Ker(S) : in other
words, W is the sum of the projections of W on the other eigenspaces of S. The goal
of this paragraph is then to determine the equations governing the coordinates p, v,

77ij and Xk-
From (6.9) we deduce that

Ol 1 Wi + Il 1 Z Sy (ks L;m) [Wi; W] = 0

l4+m=k,ne[[1;5]]3,
wn (k,1,m)=0,

or equivalently

1 i
(6.15) atuk+<§,—§,om,om,om> ST sk lm) Wi Win] =0

I+m=k,ne[[1;5]]3,
wn (k,1,m)=0,n1=1
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By Lemma 6.3, we know that
wy(k,l,m) =0 with m =1
if and only if 7, =3 and 73 = 1, or 75 = 1 and 13 = 3. Then (6.15) can be rewritten

0 1
1 ) 0 i
atﬂk+2<—,—3,01d,01d,01d> > Rim rd |, ord || éuym =0
2 2 ok
I+m=k 01d 01d
L1d 01d

or in explicit form

(6.16)

—im —im (il
Oupir, + 1k - k; {(a)\ || (=)o > m (Wum) + (Wﬂm) -l (a)\l|l| A (—|l|)¢l)
—im & il 1
o ( mpzHm " |l|>\z) - (a)\l|l| A (_“W)l) wm] =0

In the same way,
(6.17)

o 32 (i o) -om (Gom) + (G -4 (T~ o)

—im & (il ' B

From (6.9) we also deduce that

Ui k]
—Id, =T 1 i L s W] = 0.
O L R = ) D DR G

I+m=k,ne[[1;5]]3,
wn (k,1,m)=0,

By Lemma 6.3, we know that
wy(k,l,m) =0 with g, =4
if and only if 7, = 3, n3 = 4 and |k| = |m/|, or n2 = 4, n3 = 3 and |k| = |I|. Then

0 0
1 ) 0 0
7 =] 1
ath+2 <Oa 07 aN [da a [d > le o Id ) Am Id ¢le = 07
20,2 205)% g:k 07d Zi1d

[k|=|m]|

||
/\%Id o 1d
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which can be rewritten

(6.18)
1 . —il A ¢y , M A Xm —il N\ ¢y Xm
0 — ik A —_— ] - —_— A
2ESWDY [( ol ) Zm( A ) e < ol ) " o
And in the same way,

l+m=k,
IMAXm \ ., [ —UAP MmN Xm o1
RO Xm ) g = 0.
+(|m|2Am> Z(auw >+‘”(|m|2Am M) =Y
(6.19)

|k|=|m|
1. NG\ . [im A, “AAG\
Z ik . o m
LS WDY K ol ) m( |m|2Am>+‘”( ol ) " o

l+m=k,
m A Y, IO m A Yy, o)
— ] | —= A = 0.
*( |m|2Am> Z < ol )*“( |m|2Am> 1

kl=lm]
In particular, the equations governing u, v, x and 1 are linear pseudo-differential
equations whose coefficients depend (linearly) on ¢ and its first derivatives, which con-
cludes the proof of Proposition 6.1.

6.3.3. Theory for the asymptotic system. The previous analysis of the structure of the
limiting system (6.9) allows to prove that the Cauchy problem is well-posed for smooth
initial data.

Proposition 6.2. Let (a1,as,a3) € (R])*\ A where A is the set of Lebesque measure
zero defined in Proposition 6.1, and (W) € C™Y(Q) with r > 2. Then there exists T* >
0 such that the system (6.9) admits a unique strong solution W € Lg2 ([0, T*[, H"(£2))
with initial data W™,

Proof. By Proposition 6.1, for all (a;,as,a3) € (RF)?\ A, any solution W of (6.9) can
be decomposed in
W = W + Wosc

where W solves a well-posed nonlinear autonomous equation (which is more or less
equivalent to the limiting equation (5.1) under a convenient change of variables), and
Wose is governed by a linear system of equations whose coefficients depend on W.

If Wir € C™+1(Q), then W = PWin € C™1(Q) because P is a pseudo-differential
operator of order 0. Moreover, we have identified the autonomous equation for W =
(0,0, curl,,0,(—A;)"?b)T to be exactly the system (5.1) for (v,b). We have seen in
Lemma 5.1 that (5.1) can be studied exactly as the 3D incompressible Euler equation.
Then there exists 7* > 0 such that there exists W solution of (6.13) on [0, T*[ and for
all T < T,

Wz qoryersny + [0V || o o ay,emy < 1@ D)z omyereny < C,
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where C' depends on T and on [[(7™, ) ||cr+2 < [[W|gr1.
The equations governing pu, v, x and 1 are linear equations of the form

atVVosc + a(d))-VxWosc = 6(W0807 ¢)

where « is a linear pseudodifferential operator of order 0, [ is a bilinear pseudo-
differential operator of order 0 with respect to W,, and of order 1 with respect to
¢, and such that

div,a(g) = 0.
Then it is easy to check that

d
aHWOSC| %{S < C||WOSC|

¢

2
Hs Cst+l,

and by Gronwall’s inequality
| Wosellzoo o,y < [[W|[ 5 exp(CT||W || oo o.77,0541)-
Then, for all T < T*, there exists Cp > 0 such that
(6.20) W e o,79, ) + IO (| oo, 171y < Cr

7. WEAK CONVERGENCE FOR GENERAL INITIAL DATA

7.1. Error estimates. In this section, we want to prove that the solution W of (6.9)
provides a good estimate of any solution W€ of (6.5). A natural idea is to use a stability
argument of Gronwall type to prove that

W = Wlge@) = 0.
For instance, if
(7.1) oW + Q(E,W,W) 0
the following would hold
(W —W*) + Q(E,W —-WEW+We) =0
and then, by definition of @,
SN~ Wl < CIW = e [ [+ O(e),

which would give the expected convergence result by the Gronwall Lemma, since W
satisfies the strong estimate ||W ||y < C.

Nevertheless the convergence (7.1) does not hold in norm but only in a weak sense
(recall that oscillating terms have been neglected in order to obtain the asymptotic
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system). A standard method to study singular perturbation consists then in introducing
a small quantity ey, with [|y|| = O(1) in a convenient norm, and such that

(7.2) o,(W + eyf) —l—Q(E, (W + ey), (W +ey)) — 0.

The previous stability argument allows then to conclude since W + ey¢ obviously has
the same behaviour as W.

Lemma 7.1. Let (W™) € C""H(Q) with r > 3. Denote by W € L>([0,T],H") the

solution of (6.9) with initial data W'"; define y© by its Fourier coefficients

exp (éwn(k, [ m))
wy(k, 1, m)

(7.3) VkeZ® yi=— Sy
l+m=k, |l|+|m|<]|log €],
n€l1,513, wy (k,l,m)#0

sy(k, L, m)W,W,,

Then,

e there exists a nonnegative constant C such that

19Nl os o,17,1m) < C|log e+

where s depends only on (a1, as,a3) € (RF)?\ A.
e there exists 6 € C(R") with §(0) = 0 such that

< d(e).

(W + €ey) + Q <£, (W + ey, (W + ey€)>

Lo ([0,T],H?)

Proof. By Proposition 6.2, the solution W of (6.9) with initial data W™ € C™(Q)
satisfies the following regularity estimate

||W||L°°([0,T],HT) + ||8tW||L°°([0,TLHT‘1) = Cr

for some nonnegative constant C'r, as soon as 7T is strictly less than the lifespan 7.
On the other hand, by Lemma 6.3, there exists nonnegative constants (C,s) such
that

V(l,m,n), wy(l +m,l,m) # 0= |w,(l +m,[,m)|"" < C(1+]I)*(1+ |m|)*.
By Lemma 6.2,
[sn(l+m, [,m)| < C(|I] + |m])
Combining these last two estimates leads to
| < C > (LA 2D (X + [m])* (1] + [m[) WA [ Wi
l+m=k, |[|+|m|<|log €|

< Cllogel™™ Y Wi |[Wia .
l+m=k
Then

(14 k) 2lyg] < Cllogel ™ Y (L4 [IP) 2 Wil(1+ [m*) /2 [ W,
l+m=k
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which, together with (6.20) gives the expected bound on ||y|| e j0,77,17)-
In the next step we check that W + ey approximately verifies (6.5). By (6.9) and
(7.3),

QW +ey)e=— > syl 1,m)[W;, W]

+m=k,
wnp (k,l,m)=0

DI C ) AR U

l+m=k, |l|+|m|<|logel,
wnp (k,[,m)#0

exp (Ewn(k, l,m))
€ > ol L) sk, 1, m) O Wi, W]

I+m=k, |i|-+lm| <] log ],
wn (k,l,m)#0

from which we deduce that

t
KW +ey)p + Qr(=, W + ey, W + i)

€

t t
= Z exp <Ewn(k, [, m)) Sy(k, L, m)[Wy, W] + €Qy, <E’ Y, 2W + ey5>

l+m=k,|l|+|m|>| log €|
wn (k,1,m)#0

exp (Ewn(k,l,m))
€ > AR sy (e, 1, )3, [ Wy, W] .

tmk, [{|+|m| <] log ],
wn (k,1,m)#0

The estimates on s,(l +m, [, m) and w,(l + m, [, m) give then

(1+ [%[*)

t
(W + €ey) + Qi <E’ W+ ey, W + 6y6> ‘

<C Y (U Im) I EP)TEW + [m[?)E W
I+m=k,[l|+|m|>|log €|
+Ce Y (L4 |+ [m)* [y [|2W + eyl
I+m=k
+Ce > (L+ )" (L + m])* (L + (U + [m])* |0 [ Wi

I+m=k, |i|-+lm| <] log ],
wn (k,1,m)#0

which can be rewritten

< Clog e =W
H2

+ Celly||ms||2W + ey|| gs

+ O€| lOg €|25+3||atW||L2||W||L2 .

Using the a priori estimates on W and y° leads to the expected result. 0]

t
at(W + Eye)k + Qk} <Ea W + eyea W + €y€>
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7.2. Convergence result. The weak compactness results established in the well-prepared
case are still valid : up to extraction of a subsequence, we then have

eFo% —~ e, B —~ b in w* — LOO(R+a LZ(Q))

“e,a

Pt —=p, J

Moreover, using the Poisson equation, we obtain that

— 7 = pv in the sense of measures.

p=1

It remains then to identify the weak limits v, e and b, and more precisely to establish
that e = 0, and (v, b) is a solution of (5.1), or in other words that

where W is the solution of (6.9).
As the stability method used here can only provide strong convergence results, we

actually need a more precise description of the asymptotic behaviour. As W + ey©

approximately verifies the macroscopic system (6.5), we expect U, = S (—E) (W + ey©)

to provide a good approximation of the macroscopic quantities
(div,7®, divy(eES%), curl,jo%, curl,(eE%), (—A$)1/2BE’O‘)

defined from the Vlasov-Maxwell system. Indeed we will prove that

~

jf,a ~ Ue,q = —V:L‘(_A:E)ier,l + Curlm(_Am)ierﬁ’
elo% ~ €e,a = —V:L‘(_A:L‘)ier,Z + Curlm(_Am)ierA’
B ~ be,a = (_Ax)_l/QUEﬁ'

By Lemma 7.1, we know that there exists 6 € C'(R™) with 6(0) = 0 such that

from which we deduce that

< d(e),

Le°([0,T],H?)

(W +ey) +Q <£ (W +ey), (W + 6y6)>

1
oU. + -SU. + R(U., U,)
€

< o(e).

L>°([0,T],H?)
Comparing both systems (6.7) and (4.2) shows that
Ae’a(ue,aa €e,ar be,a) - 0(5(6))
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in L*>([0,T] x ). Then plugging this last identity in the stability inequality (4.8) leads
to

H," (1) < H,° (0) eXp(G/O |1 Dzv(s)l|Loeds) + O(y) + O(5(e)).

uf,ayef,aabf,a ue,aaee,aabf,a
The assumption on the initial data gives exactly
H be.o (0) = He’,‘;’b(O) +O0(e) = 0

with , ,
u=—Vy(—A,) UM + curl,(—A,) UM,
e=—V,(=A,) U + curl,(—A,) UM,

b= (—Ax)_l/ngn where U = W,

We then deduce i

(t) > 0asev—0,

Ue, e, ,be,a

for all t < T* where T* is the lifespan of the strong solution of (5.1). In particular,
eE°* =0, B —binw— L>*([0,T], L*(Q)).

To get the convergence result on the current, a natural idea is to use the following

estimate .
/ |.]E’a - pe’aue,a 2 < 2He,o¢

pAe,a - Ue,as€e, 00y
as in the well-prepared case. Nevertheless, since u., has an oscillating part, we should
need some regularity with respect to time on p©% and /p©® to conclude directly, which
seems to be a difficult issue. Here we will rather use an argument of weak convergence.
Taking weak limits in the Ampere equation (the last equation in (1.4)) shows that the
limiting macroscopic quantities (v, e, b) belongs to the kernel of the penalization L, in
particular

be,a

curl,b = —aw.
We have like this identified the weak limits v, e and b, which concludes the proof of
theorem 2.3.
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8. APPENDIX A
THE SINGULAR PERTURBATION

The study of the asymptotic behaviour of a singular system such as (6.1) requires
a good understanding of the linear perturbation. This first appendix is devoted to
technical computations leading to the precise description of the oscillating modes of the
linear operator S with symbol

Sy = 0Id Id  0Id
~1d ord -%jq
0fd ™14 ord

e We are first interested in the diagonalization of the first block

0 1
-1 0
which is actually independent of k.
We have seen that its eigenvalues are ¢ and —i. Correponding eigenvectors are (1, 1)
and (1, —i), from which we deduce that the transfer matrices are

P (DL) (1)

and that the projections II;; and II; 5 can be written

1
L 1

= | 0Id (—,——,Old,OId,()Id),
ord | \2 2
01d
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1
— 1

Mo = | 0Id <—,—,0]d,0[d,0[d>.
0rd | \2 2
01d

e The second block can be tensorized as follows

0o 1 0

10 % )erm

0o o

where Id denotes the identity of C?.
The eigenvalues of such a matrix are A3(k) = 0, Ay(k) = iy/ = 2 41 and As(k) =
—iy/ ‘k| + 1. The transfer matrices diagonalizing the first factor can be written

&l 1 1 i L s 1
DY o ax ﬁk\
P.=10 —i 1 and P = L Lt )
2X 2 ﬁa/\
1 L L] 1 i kL
A a\  aA 2\ 2 2aA

with the notation A = /1 + |k|?/a? from which we deduce the explicit formula for the
projections Il 5, II; 4 and IIj 5 :

0
0

—~ 1
s =| 214 (0,0, Mld,om, —[d),
OQId al\ A

1 ik
M.,=| +1d 0,0, — Id, - Id, Id
ki A ( "oN T2 T a0 >

1 k
M5 = %Id <o,o,ﬁfd Id2||)\ld>
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9. APPENDIX B
SMALL DIVISOR ESTIMATE

In order to describe the coupling between the various oscillating components through
the nonlinear terms, a basic tool is the study of the resonances, i.e. of the solutions
(I,m,n) € (Z*)? x [1,5]? of the dispersion equation

wy(l+m,l,m) = Ay, (I +m) — X, (1) — Ay (m) =0,

where (A\;(k))jeqi,5; denote the eigenvalues of Ry for all k € Z®. As these eigenvalues
are the roots of a polynom with polynomial coefficients in ki/ay, ka/as and k3/ag, the
following small divisor estimate 5| plays a crucial role to obtain the structure of the
limiting equation.

Proposition 9.1. Let P(l,m) be a polynomial in a3 with coefficients that are polyno-
mials in [,m. Then, there exist A C R of Lebesque measure zero and Q@ C Z° such
that

V(l,m) € Q, P(Il,m) =0

Vas € R%\ A, 3(C,5), ¥(I,m) € Z8\ Q, |P(L,m)|"" < C(1+ |I)*(1 + |m])*

10. ArPPENDIX C
SYMMETRY PROPERTIES OF THE BILINEAR OPERATOR R

In order to prove that the mean field satisfies an autonomous equation, we have to
establish that there does not exist any constructive coupling between oscillating terms,
which is due to the particular form of the nonlinear term.

The explicit formula for Ry, shows that

g

—k| . —il il . [ —im im
= kA —X A X . —=VYn —= AYy,
2 e TR N e ) Gt F e M ms

—il il 1
+« Xl 1+ == A Xl 3) —Ym,5>
<Il|2 1[? m|

—|k| . —im im —il il
kA —Y,, —AY,, . X — AKX
T 2an ™ e N ) e e A e
" | 1
+o ﬂyml—*—ﬂ/\ymg /\_Xl5
™ e s | A

k
(0 0, | |Id 01d, AId> Rim[ X1, Vi)
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Plugging X; = (1, 44,0,0,0)" and Y, = (¢, =i, 0,0,0)7 into the previous identity

leads to
—|k| il im im il
e i | o=im | —— ) + —— il [ —
E = St 2 <|l|2 “”<|m|2>+|m|“ <Il|2>>

k=l4+m
|k| il.m
=+ 1k A\ Up—o——=k =0
o N 2 MO

In the same way, for X; = (0,0, $-xt, =ix1, ax, X1)” and Yo = (0, 0, 340, ithm, J5-thm)”
with |I| = |m|, we obtain

=1kl
0,0, IdOId—Id Rim| X1, Y,
(’ o A b Xty Yo

—|k| . il il 1
= kA A . m ~ A N —Vm
200 )\|l|2 X )\| | Ay )\|l|2 Xt MRV
K /il |
k .l m N
METS WS )\|m|2 e ) e )\| | Nm | A RN

where A = \; = \,,, from which we deduce

—|k
T = ﬁ’f Y %”4 ((TAX2)-m (M A ) + (m A b)) L (1A X))
k=l4+m,|l|=|m|
k
+2ylkA > ;%%UAXDA¢m (m A ¥m) A x1)
O et 1= m|
—|k
QOJAL’f AN All|4 (LA X0)m (A ) + (m A b)) L (LA X))
k=l4+m,|l|=|m|
k
+ QLL’“ AN |1l|4 (LA X)) A (A DR) Am) + (m Ad) A (LA ) AL))
k=l4+m,|l|=|m|

Indeed, we have

(m A ) Am = |m|2wm and (IAx) ANl = |l|2Xz
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by the divergence-free conditions m.v,, = l.x; = 0. Then, developping the vectorial
product leads to

7 (LA A ) + (0 A )00 A )

k=l4m, |l|=|m|
k| 1
+ 20()\kkA Z )\|l|4 ((l/\Xl)'m(m/\wm)+(m/\wm)'l(lAXl))
k=l-+m, |1|=|m)|
S A A A g)m A0 )
20\, Al i " m l
k=I-+m, |1 =|m]|
S A tm Ak =0
20\ k=l+m, |l|=|m| Al l' "
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