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Abstract

In this paper, we prove the convergence of the current defined from the Schrédinger-Poisson
system with the presence of a strong magnetic field toward a dissipative solution of the Euler
equations.

Résumé

On étudie ici la limite semi-classique quasi-neutre du systéme de Schrodinger-Poisson sous I'influence
d’un champ magnétique fort. On obtient comme systéme limite la formulation tourbillon des équations
d’Euler incompressible. La démonstration s’appuie sur la méthode de I’énergie modulée introduite par
Brenier dans [2].
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1 Introduction

We consider in this paper the behavior of electrons moving on a positive charged background influenced
by a very strong magnetic field. We describe this phenomenon from a quantum point of view. The
equations which are satisfied by the wave functions are a variation from the Schrodinger-Poisson
system. They depend on three parameters, the Planck constant (A > 0), the permittivity of the
system (¢ > 0) and the strength of the magnetic field.

We deal with the asymptotic limit which corresponds to the case when the magnetic field is very
strong, the Planck constant and the permittivity are both very small (implying that the electron
density is quasi-equal to the ion density). As Brenier in [2], who studied the quasi-neutral limit of
the Vlasov-Poisson system (with and without external magnetic field), we obtain at the limit that the
curl of the potential involved in the system is a dissipative solution of the Euler equations in the sense
of P.-L. Lions.

In [11], we also studied the same asymptotic limit in the case of the Schrédinger-Poisson system without
magnetic field and obtained that the electron current converges to a dissipative solution to the Euler
equations. Those results are a rigorous justification of the composition of two different asymptotic
processes which already have been independently studied in [8], [9] and [5] for the semi-classical limit
and, as mentioned above, in [2] for the quasi-neutral limit.

1.1 Presentation of the system

We write the Schrédinger equation describing the motion of electrons on a charged background sub-
mitted to an external magnetic field B = curl A. In this case (cf. [4]), the quantum Hamiltonian is
given by

H, =

[P — A% = 5 (P? 4+ qAP + qPA + ¢*A?),

1 1
2m m
where P is the operator defined by P = %V.

This problem is initially stated in R3. Since we neglect the third component of the velocity and the
dependence of the two first ones with respect to the vertical variable, our study is set in R?. In the
following, for Z € R?, we denote by +Z the vector

VA
Loy 2
z=( 2% ).

We choose a potential A = —;—‘;, which corresponds to a vertical magnetic field. Let us notice that A
il
commutes with P because V (2—$> = 0. Assuming ¢ = m = 1, the Schrodinger equation thoy) = Hg1p
€

becomes in our setting

h? h 2 1

inopt + 1 e+ P (e gy e = Loy
2 2¢ 8¢ €

where 1 is a wave function.



In this paper, we consider a superposition of states (instead of a pure state) where each state k € Z?
has a weight A\ > 0 and we add the effect of the electric field. Finally, we deal with an electron density

given by
po(tw) = Y Mg (t, 2) (1, )
kez?
where the wave functions satisfy the equation
jz?

'haz/ﬂ"—QA@/)EJFﬁ(L V)i — 5
MR T SR T et YR T g

v = 240
coupled with the Poisson equation
0F =6 — Ag*
where the ion density 6 (x) € C*(R?) satisfies
0<6°(2) <1,
0°(z) = 1 if z €] — R%; R[4,
0°(z) = 0 if z € RY\] — R* —4%; R® + 4°[%,

e—0 e—0

(1.1)

(1.2)
(1.3)
(1.4)

(1.5)
(1.6)

where (R°) C R%, (R°) — +o0, and (y*) C R}, (y°) — 0. Under this form, (6°) uniformly

converges to 1 and its derivatives to 0.

An adaptation of some results of [1] and [3] enables us to show the existence of a solution of the system

(1.2)—(1.3) for a fixed e. We skip the index € to present the existence result.
Let us define the following Hilbert spaces

o.¢]
X = {I‘ = (’Ym)meN"}’m € L*(R?), Vm and Z >\m||'7m||%2(R2) < oo} ,
m=1
H = {4| (v, V7, A7, 21,1219, o27) € L2(R2) }
with their associated norms

oo
||F||§( = Z Am”%ﬂ”%?([&?)a

m=1

IME = 1T ey + 1A 2@y + 22 ey + 121V 2y + 2] 722,

o0
Y = {r — (%)meN‘% € H, Vm and > Apllyml[F < oo,}

m=1

with the norm -
T = Allyml
m=1
and finally, if 6 : R? — R2,
Y = {r € Y‘/ (0 —n(D))dz = o}
R2

where n(T') = Y00 A\plym %

The following existence result holds.



Proposition 1.1 Under the following assumptions,
- the function 0 is in L>°(R?) and (1 + |z|)0 is in L'(R?) N L?(R?),
- the initial data are smooth enough, i.e. (1o k)ren € Y,

there exists a unique solution to (1.2)~(1.3) (r)ren € C([0,T],Y)NCY([0,T], X) and (1bx(t))ren €Y
for t € [0,T], with T small enough.

The proof of Proposition 1.1 can be found in [11].

Remark 1.1 It is probably possible to obtain additional regularity for the solution ¢ when the initial
data are smooth, but this question is not addressed in this work.

We will use this result for any . Let us note that since the ion densities #° are in C°(R?), the first
assumption is satisfied.

1.2 Main result
Theorem 1.2 Let T > 0 and J° = —1V®, be a divergence free vector in L>(R?). For any ¢ > 0,

let O° be the ion density of charge characterized by (1.4)-(1.6), and let us consider, for any e, h and
each state k, the wave functions 1%, solutions to (1.2)-(1.8) with C°(R?,C) initial data. Moreover,

we assume that
/ > Akll/)i(ﬂ,ﬂﬂ)lzdx:/ 0% (z)dz, (L.7)
R2 R2

kcZ.2
V¢ (0,2) — (£J°(x))|?da 2300, (1.8)
RZ
c J‘x c 9 £,h—0
e N /R BVE0,2) + 5295 (0,2) 0. (1.9)

keZ?

Then, up to a subsequence, (—-V¢°) converges in C°([0,T); D'(R?)) to a dissipative solution of the
Euler equations with J° as initial datum.

Remark 1.3 As in [2], we consider that J is a dissipative solution of the Euler equations with J? as
the initial datum if, for all smooth divergence free compactly supported vector v(¢,z), and for almost
every time,

/|J(t,x) —v(t,ac)|2dac§/|J0(ac) — (0, z)[2dz exp (/0t2||d(v(0))||d9> (1.10)

+ 2/0t exp (/:2||d(v(0))||d9> (/ A()(s,2) - (0 — J)(s,x)dac) ds,

where d(v) is the symmetric part of Dv = 0;v;, ||d(v(¢))]| is the supremum on z of the spectral radius
of d(v)(t,z) and
A(v) = 0w+ v - Vo. (1.11)



In the second section, we establish the equations which are satisfied by the density, the current and the
energy. Then, in Section 3, we give the proof of Theorem 1.2, which is mainly based on the modulated
energy method introduced in [2]. Finally, we build an example of well-prepared initial data.

2 Equations of conservation

2.1 Comnservation of mass and total momentum

We define the current J¢ from the density p° using the equation

Op° + divJ® =0, (2.12)
and we obtain L,
J=J+ = 2.13
+ 2€p (2.13)
with J¢ defined by
T () = > MIm(BVYL(t, ) (1, 2)). (2.14)
k

Equation (2.14) is the classical form of the current when there is no magnetic field (see [10] for
instance). It is important to note that the classical relation 9;p° + divJ® = 0 does not hold here.

Remark 2.1 The difference between J° and J¢ must be understood like the difference between im-
pulsion and total momentum. Indeed, J¢ corresponds to a real physical quantity (cf. [4]). Assumption
(1.9) can be interpreted as an hypothesis on the initial velocity or kinetic energy.

Proposition 2.2 The current J° satisfies the following equation in the distributional sense
o = =) MV || WV + 'j«/}a ® ( WV, — 'EEE + 1(— VoS +1 JF)
t - - R kT Vi kT Ve Vk P
(2.15)
+ Z AV ( (A + APy, + 2V, - Vl/’k))

which means
T —€ ,J'm—e 1 ~
/U SO J = ;)\k/ <hV1/1k 41— 1/’k> ® (hV@/)k — 12—6¢k> + - /v - (—p°Vo° +L Je)
for all divergence free test function v € D(]0, T[xR?).

Remark 2.3 We use the compact notations

— 1 -
A®B:AiBj, (V:B)i:ajBij R A®B:§(A®B+A®B).



Proof: We compute 9;.J° using (1.2) and obtain

HJ = Z Ak [ ( (AP + A + 2V - V¢k)> — W2V : (VYiRVe,)

(2.16)
e A i(J‘x V)JF — 1V¢5 £+ ja ¢
2¢ 2e € P

Moreover, we define
L(II _ J—x_
- . € . £ — € e €
It comes

— oy, 1 + + 1
I = Z AV (WYY @hVy) + EV : (g I +J® g) + 4—52V :(tz @t xpf).
k

Then we have

o= > A V-(thpE@hVEE)Jrzdi Pty L V)Jf—iacmrj vy
b p RY k BT e Y 2e 2e 27 £ P

= va-(hwﬁ@hvagnlﬁf 1( V)Jf+IL L‘% La
IR k Wotg St 52 \22 )P ~ 20

because the conservation of mass (2.12) implies

1 1 1
Tlawr - E vy ) = - 2o.°
5 <d1vJ + 5 Vp ) 5z op°.

This computation gives us equation (2.15) from (2.16) because

N 1
0T+ MV Khwsz—jz/;,i) (hV¢k — i zpk)]
k

aJ€+ZAv hV@b@th/))JriLJE 1( V)Jf+iL Y o
- ’“ k KT 9 20 * 2¢ \2: )P 722

]- 7 h2 —€ —€ —€
= E(—PEV¢E + ) + Z ALV (Z(A¢Z¢k + Aty + 2V - V¢k)>'
k



2.2 Conservation of energy

The energy of the system is the following

2

1

1

de+ = | |V¢e(t,z)|*d, (2.17)
2 Jre

1 .
t) = %:Akig/ﬂ@ ‘hV@[)}z(t,x) +z2—:z/1,i(t,ac)

and satisfies

Proposition 2.4 Energy H® remains constant with respect to time.

Proof: Indeed, let (¢§)ken € C([0,T];Y) N CH([0,T]; X) be a solution of (1.2)-(1.3),

2 Lo 1z)?

= |hV €12 2J¢ . —— il el IR

LLL'
h € - e
‘ VI/)]C +1 % Tpk

and then

€ € € 1 |$|2 € 1 1L € € €
—H Z)\k2dt/hv¢k-hv¢k+§/?8tp +5/ w0 +/atv¢ Ve, (2.18)

First of all, let us compute the first right-hand side term of (2.18) using the Schrédinger equation (1.2).
Note that 0;Vy* € H~!(R?,)\) because (1.2) ensures that 0;°(t,-) € L?(R?,\) since AvF°(t,-) €
L2(R% ) )).

Remark 2.5 We recall that for any m > 0 and for all sequence (A\),cz2, H™(R?;)\) is the Hilbert
space defined in the following way

= (Yr)ren € H™(R%;N) if Vh obp € H™(R?) and if Y Mgl [hr[Fm 2y < 00,

associated with the norm ||¢||? mE2) = 2 el | )2 m(R2)"

We define y
€ —
I =— E — V5 - hV
7 4 )\k2/h Yy, - hVy,

and we have

€ —€ —€ e
I = Z)\k§<h26tv¢z;vz/)k>H—l’H1 —|—h2(3tV1/1k;V1/)k>H71,H1
k

= i [ (v (s - Bt v+ 2L AR
= -3 k k x )1/)k+ <z ¥k + ¢1/J ; Vb,
%

H-1, 01

2
# Son (VoY (h AT~ polio VB~ S~ 26T ) ]
k HI’H—I



and then, it follows that

2 2

ZM / he A AT — A AT +2Ak / "y (':L) (Vb — Vbiby)

+Z>\k/v (Vi — V%/Jk%/)k Z V(tz V) Vi) ma-
W e

+ Z AkZ(V( T V) Vi) g1 i

k
2
-/ (%Hf) divgs — ZAk [ v (“a(vi - vi)

/(| i +¢E> divJ®
o )

Each of the above integrals are well defined. Indeed, we have

> [ 59 (BL) - 7w - v

< Y Mllz - Vel ookl 2
k

< C (Z Al - v¢k|li2> (Z MII%II%)
k k

Cllz - V[l 2oy llll2

< € (e Pllzz o 1Az + ll2] - Tolay)

‘ / %divﬁ
S / div(“a(Vi - Vi)

1divT®|les < 9% |2 oo l|AY® 200 + V95|72

and ¢°(t,-) € L®(R?), V¢©(t,-) € EOO(RQ,RQ) (see Section 4). Moreover, the integration by parts can
be performed because Lz (Vs - V) belongs to L!(R?). We recall that ¢° € Y and then for a fixed
€, the right terms are finite.

< 2V [rzoy [ 2

In a second step, we now consider the third right-hand side term in (2.18). We rewrite it under the
following equivalent form using (2.16)

1 1 — 1
—/J‘m-atf = —ZAkERe/J‘x-V : (WY @ hVipy) — 2—E/J‘:1:-V<]5’5,0E
k

2
L [y I 1 1 1 I/L |¢’JU|2
- S I B, V) JE — = B v lnd HpSS
+2/$2g 2/2&:"’3(3“" V=5 ) e Vgt

8



since 1z -V : (hV;, ® hVE;) = L:L“z'aj(hQaz'l/),r‘iajai)-

The previous integrals are well defined thanks to the following upper estimates

/ / Ly (W @ hVEY)| < [ lmeoyllz] - Tl

‘/Lx-vqﬁapg < IVl 2197 2o 1972 o

‘ / Lo gl < (e Vo1 2 oy

IN

P97l 2 ool 197 L2 + 1172 - V<[ [T2

‘/ix.(ix.V)Jf

After simplification, we have

1
3 [ oo = > Aule JEC e

1 T 1
- G D € 1. € - 1., € /€
+46/$J / J®$)/m862p+26/xv,0¢
_ 1 € 1 € 1 1 € e
= 5 z-J 4€/xJ+2€/:JcV,0¢
1 1
= —/Lx-VqubE:/qudiv(—xpE).
2¢ 2¢

The last term is finite because

‘ / €L .V ,06 ¢5
Finally, we obtain

0 = (s )anr [L [ougore faso-ve

= / $*divJe — / OAGE P°

<o 172 - V4% | L2 o) 197 |2

_ / $ 0" — / 0, AP = 0.

We have obtained that the energy HF? defined by (2.17) does not depend on time and this concludes
the proof of Proposition 2.4.



To justify the sense of each integral of the previous computation, we use again some results of Section
4, which are V¢©(t,-) € L?(R2,R?), 9,V¢°(t,-) € L?(R?,R?) and the following results

2
‘/ﬂatpa
£
‘ / Hedive| = ‘ / ¢°0p°

3 Proof of Theorem 1.2

< a2 ool18el |2 r)

and

< 171z 110epll 2o 122 0

3.1 Definition of the modulated energy

Proposition 3.1 For all divergence free test function v, we define a modulated energy

] — € ] € . € 1
= ; Akg / (hwz + fjwz - z’m,bz) (hwk - QL;wz/zk + zvzpk) +3 / V(6" —

~ (3.19)
with ~V¥ = v. The function HE(t) satisfies
d 'l 1 . —€ /L 1 —€ . €
%HE( = —5/; Apdv (th/),i + 52 Yy, — zv@b,‘i) ® (hV@l)k ~ 5 ), + zvz/Jk)
+ /dv V(¢F —T)®@ V(¢ — ) (3.20)
+ 6/A(v) (pfv—J°) + /OEvVgﬁE + /A(v) (v 4 1Ve).
Proof: Differentiating the modulated energy (3.19) with respect to time, we obtain
d - € ) € 2 he e € ex7,,° L‘II; €
s ZAk 7 || (GPIVE+ o miil” = oo (VO — wi Vi) — v —-p

€ e 1 . . 1
+ SWPUTL+ gIVHP - Ve vt e |

It can be expressed in term of the energy HE¢ in the following way

d ~ d ~ d ht’:‘ p—— Lg c
) = G g / ( (VY — UiV — v

_ 1
n g|u|2z/),§z/); V-V 5|v\1/|2>.

10



Thanks to Proposition 2.4, we know that the energy is conserved. Therefore, we obtain the following
simplified form for the time derivative of the modulated energy H

d r7e _ d Je € 2 € 3 1 2
EH"(t) = o eJ U+2|’U|p V¢ V\II+2|V\II|

= /%|U|23tpa+%/ﬁ€3t|v|2—ff(v;atjab,o' —6/j6'3tv

1
+§ /8t|v|2 - /V¢E . 8tV\I/ - (V\I/;atv¢5>1),pl,
since VU = v.

We compute each term of this identity. First of all

—<V\I/;8tv¢5>1)’pl = /8tA¢E\I/ = —/8tp€\11

= /divjE\Il:—/jE-V\Il.

Furthermore, because of equation (2.15) satisfied by 9, J¢, we obtain

N i — i —
Iy = ;) pp = —5/Z>\kdv : (VY5 + 2—5%1/);) ® (hVe, — EJ‘xd)k)
k

+/psv-V¢E—/v-LJNE,

that we transform, using *V¥ = v and the Poisson equation (1.3), into

£ i £ A i A
I, = —¢ / > Aedo : (th/)k + 2—Elxzpk> ® <hv¢; — 2—5%31/);)
k

—/A¢%-v¢f+/9fuv¢f+/ﬁ-qu.
Moreover,

—/AgﬁEU-V(ﬁE = /6j8j¢5vi8,¢5 = /8j¢58jvi6i¢5+6j¢5vi6j8,¢5

= /dv . V¢ @ V.

We have then
5 i 5 € i €
L = —¢ / %:Akdu : (th/)k + 2—5%%) ® (th/)k - 2—Elxzpk>
(3.21)
+/dv:v¢f®v¢f+/9%v¢f+/ﬁ-wf.

11



To obtain equation (3.20), we must study the modulation by v =1 VU and by VU in the two terms
of energy H® given by (2.17). Let us study the first term

—& / ;Akdv : (hw,i + ;—ngm,‘EC) ® <hvE2 — 2%}@;)
— _g/z M Dv [(hwf + iwa) ® (hV@E — iL:ﬁ)]
- . k % k k % k
= —¢ / ; ArDv [(hw); + 216%1/;; — ivzp;) ® <hvE; — ;—giﬂ; + z‘z@;ﬂ

—6/Dv:jg@v—e/Dv:v(X)jE—i—e/pst:v®v.

The conservation of mass ensures that

—5/Dv:v®j5 = —6/3jvijfvi: %/diVjEMz

= —g/atp5|v|2.

Now, we can use the results shown by Brenier in [2] to obtain

/dv:V(]ﬁE@V(]ﬁE = /dv:V(qbg—\lf)@)V(qéE—\I/)—i-/Dv:V\I/®V¢E

—|—/D1}:V¢E®V\I/—/D’U:V\I/®V\I/.

In [2], it is also shown that
%/p58t|v|2—6/j5-8tv—6/Dv:jg@v—i—e/pst:v®v:6/A(v)-(pEv—j5)

%/atlul2—/v¢f-at\1/+/m : V\II®V¢E+/DU : V¢E®V\II—/DU : VIQVT :/A(v)-(v#wf)

so we obtain (3.20) introducing the modulation in (3.21).

Remark 3.2 Since the functions ¥ and v are test functions with compact support, the integrations
by parts do not give any boundary term. And they are well defined because p(t, ), 0,p°(t, -), divJ® (2, -)
are in L'(R?), J¢(t,-) € L}(R?,R?), V¢°(t,-) € L®°(R?,R?) and A¢°(t,-) € L' (R?).

3.2 Convergence to the Euler equations
We prove in this section that (—-V¢°) converges in C°([0,T], D'(R?,R?)) to a dissipative solution

of the Euler equations. We first establish a result about the convergence and then we perform some
estimates involving the modulated energy to identify the limit.

12



3.2.1 Convergence

Proposition 3.3 The sequence (p°) is compact in C°([0, T]; D' (R?)), (J%) is bounded in D'(]0, T[xR?),
(HE) converges, up to a subsequence, in L= ([0,T]) —w* and (V¢©) converges in CO([0, T); D' (R2?; R?)).

Let us first note that the conservation of energy implies that H¢(t) = H®(0) and assumptions (1.9) and
(1.8) imply that (H¢(0)) converges. Thus, there exists C' independent on ¢ and ¢ such that H¢(t) < C.
This inequality implies that (V¢°) is bounded independently on ¢ in L ([0, T]; L?(R?,R?)) and then
(p° — 6°) is bounded in L ([0, T]; H (IR?)) since, for all test function v, we have

_ ‘_ / N

< C||V’U||L2(R2).

‘ [ ) = 0 1ot

Remark 3.4 The density p® given by (1.1) satisfies /ps(t,w)dm = /pE(O,IL‘)d(II
but /pE(O,:L“)d:L“ — oo when ¢ goes to zero.

Let us now show that (6%(75) is bounded in L>®([0, T]; (W14(R?,R?) N L?(R?,R?))").

Indeed, since J° = Z A Im [(hV@l)Z + 22—?/12) @;], we have
k

< (/thww —W) (/Zwm |v|2>

1
< C (Il +1vllZ2)*

Furthermore, the Poisson equation (1.3), which links p® and ¢¢, implies that (p® — 0°)V¢® is bounded
in L([0,T]; (W™P(R2,R?))") with m — 1 > % because for all g € W™P(R?, R?),

‘/ (t3) — 0° (¢, 7)) Ve (£, 2) da

= ‘ /Agﬁg (t,z)g(z) - V¢© (¢, z)dz

_ ‘ / (Vo (b 2) - V)g(z) - Vo< (£, 3)da

- [ SV Pdivg(a)ds

< Cllgller ey < Cllgllwmr,

13



recalling that m — 1 > 2/p. Additionally, we have

€L
Oi(p° — etV - J)+1 V- (p° V) = Zxksiv< :[(wﬁw%m;) <hV1/)k—z 1/)k>]>

3.22
Since ((p° — 6°)V¢°) is bounded in L*°([0,T]; (W™P(R?,R?))') and since the energy is consérved),
identity (3.22) implies that (3t(p5 - slv.js)) is bounded in L ([0, T]; (W™'»(R2) N H' (R?))')
and then, using Aubin’s Lemma locally (cf.appendices of [7] and [6]), (p° — -V - J?) is compact
in C°([0,T]; D' (R?)). Since etV - J* = O(&?%) in C°([0,T]; D' (R?)) we show that (p°) is compact in
CO([0, T); D'(R?)). Since p° = 6° — A¢®, (V¢F) is also compact and then, up to a subsequence, (V¢*)
converges in CY([0,T]; D'(R?,R?)). The modulated energy (H:) is bounded in L>([0,7]) and then,
up to a subsequence, converges in L*([0,T]) — wx.

This concludes the proof of Proposition 3.3.

3.2.2 Identication of the limit

Inequality (3.20) can be written in a weak form in the following way

/ HE(D)2' (t)dt — 2(0)HE(0) < / 2\|dw| | HE () 2(t)dt + / [5A(v)(p€v—j5)(t,x)] 2(t)dtda

+ / [A@W)w + V) (¢, ) + 0079 (1,2)] 2(1)dtda,

where z is a test function belonging to D([0,T7).

As soon as ¢ is small enough, 6 = 1 on the support of v. We can pass to the limit because (lfl;;j )
converges in L*>°([0,T]) — wx*, (p°) and (J°) are bounded in the sense of distributions and (V¢°)
converges in C°([0, T]; D' (R?, R?)).

Then for all test function z € D([0,T]), we have
/H t)dt — z(0)H, o < /2||dv||ﬁv(t)z(t)dt + /A(v)(v +1 Vo) (t, z)z(t)dtdz,

with H, o = lim._, HZ(0).

Using Gronwall’s Lemma, we obtain

_ _ t
1°V($) = V(©)[[[2mey < 2Hy(t) < 2Hogexp (/0 2||dv(0)||d0>

+ 2/0t exp (/:2||dv(9)||d9> (/ A)(s,2) - (0 ++ ng)(s,x)dx) ds.

~ 1
Since Assumptions (1.8)—(1.9) hold, we have H, o = lir%/ §|V¢E(0,x) — VU(0,z)*dz.
E—

14



Moreover, we have

V(@) ~- VO ame) = V() — V(D)|[Zage) < liminf ||V () — V(D)

< liminf HE(t) = H,(t).

And then, if / |V¢©(0,z) — Veo(z)|?dz — 0, —-V¢ is a dissipative solution of the Euler equations

with J° = —V ¢ as an initial condition.

3.3 Construction of an example of well-prepared initial data
3.3.1 Condition on the potential energy

To build an initial condition satisfying Assumptions (1.8)-(1.9), we consider the case when wy =
curl JO belongs to D(R?;] — 1,+1[) with [wy = 0, and we pick up € small enough so that 6° = 1 on
the support of wy. Let ¢ be a solution in R? of

A¢0 = Wo,
such that J% = —+V¢y. Assumption (1.8) can be written as
/ IV¢©(0,2) — Vo (z)|*dz — 0.
We also have to assume the global neutrality at the initial time which can be written
/HE(w)dw = p°(0,z)dz = 0.
To estimate / |V¢©(0,2) — Vo (z)|>dz, we use a result from [1], stating that, if A¢ = f with / f=0,
then [[Vol[r> < C(lll«]fllL +[If1lz2)-

Write f(z) = 6°(z) — p°(0,2) — wo(x). If the global neutrality is satisfied, we have /f(ac)dac =0 and
then

/|V¢E(0,!E) — Vo (z)Pde < O(|llz|fllLr + IIf]1L2)* (3.23)
Let C}, be the elementary box defined by Ci =]yx—n; yx+n[% with yx = (k1n, kan), k € ZZH]—W;E; mlfs 2,
o° being such that the support of 6° is included in I,- =] — L; L[> and Ay = n? = |Cy|.

Let 0" and w{ be defined by

1
V$ € Ck 95777(51)) = m . Os(y)dy,
k
@) = = [ woly)dy
ICk| Jo,



We take

2 x — L1
6 = e o= e (~ESE ) exp (i

1
“itlal < -
O-E

Let us remark that, since 6°"(z) = 1 on the support of wp, the function /(65" — w]) is well defined,
since we assumed |wg| < 1. We then get

1/);’h($) = 0 elsewhere.

e,h —2 nem n (x_yk:)2 . 1
) = e i e (S ) il <
pg’h(x) = 0 elsewhere.
We have/ pg’h(x)dx :/Hg(w)dac and then /f(m)daczo. Indeed,
R2

[t - D A0 ) = [ =y

o€

= / (0° — wo)(y)dy = 0% (y)dy.
R2 R2

We want to show that |||z|f||,1 +||f]|z2 — 0 when both A and ¢ go to zero. In order to obtain this
result, we perform the following computation.

First of all, we have

i) = [ e o e (52 Y ] <0 () s (51).

because for all y € Cy, (05" — w)(y) = (65" — w{)(yx) and

N2 )2 _
exp (—L hy) ) — exp (—L hyk) )‘ < Cnysel}fs (L . y').
Then we write

[ em - (- dy = [ e o - awes (-2 ) 4y

e

and

T — 2
[ et = e (-2 ) - 07 e

dy

— )2
< /Rz(%rh)—l (657 — w)(y) — (6° — wo) ()] exp (_%) iy
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Lastly, we use the following estimate

(0" — wi)(y) — (6° —wo)(z)] < (0" — wi)(y) — (6° — wo) ()] + [(0° — wo)(y) — (6° — wo)(z)]

< Cn+ [z —yl) sup(|V(6° — wo)]),

to obtain for |z| < L

,),5 ,),5 (0-5)3 h2

|f (@)] = [6°(z) — p>"(0,2) — wo(z)| < C (ﬁ ! < ) ,

and |f(z)| =0 if |z| > L.
We recall that V¢ ~ 7—15 and that

/1&2 |z — ylexp (— @ _hy)2> dy < C(Vh)®.

Then, we have

1 Vh ’
) NP N n
||f||L2/|f( )| d < 0(0-5)2 (,),5 + ,YE + (0-5)3h2>

and

llelfll [ lellf@lde < ¢ (ﬁ + 1y (053’3h2> -

v

Jf topt ()L?’h? = (0°)°ue, h), with pu(e,h) “*3" 0, the estimate
Y g

Y
(3.23) implies that Assumption (1.8) is satisfied.

If we choose o¢ such that

3.3.2 Condition on the kinetic energy

Note
2

I=¢ / > ‘hVQ/)Z’h(O,x) — G ()" (0,2)| da

kely
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The second assumption (1.9) will hold if I goes to zero when € goes to zero. We have

r= [ [hQ <7JGE§Lyk) (= —hyk)> o (0, 2) (_iGES/k) (= —hyk)> 70, 2)

T ke,

26 (@ I Yo 0 ) 0,) 1167 @) P 0,00, 2)

h? —yp)? h —e
= = [ 5 (Gl6T R + 2 atr w6 ) + 167 ) w0007 0.0,
T kel,

which becomes after simplification,

T — yp)? —
r=c [ S (167 - 6@ + 12 S ) 0,07 0.0)

T ker,

Equality G (yx) — G5 (z) = Ly’z_x allows us to estimate I and to obtain

1 p?
R S ) L A
€ xT
ke,
1 h 1\ -
= CZAkh(”‘)” 2(6+—> 2230,
kel € G £

if h = o((0%)%).

In conclusion, let 0°, ¥° (that we will fix equal to £2) and p(e) be three functions of £ which go to zero
when ¢ goes to zero, we choose h, such that vh = (0°)3y%u(e) to have h = o((0°)%¢) and we choose 7
such that n = p(e)(0)? inf(v%; h2(0°)3).

4 Properties of the potential

We give here the properties of the potential which are necessary for the proof of the conservation of
energy.

Proposition 4.1 The parameter € being fized, the potential ¢°(t,-) satisfies the following properties:

¢ (t,-) € L®°(R?), V¢&(t,-) € L¥(R*) N L*(R?) and 9,V ¢°(t,-) € L*(R?).

We recall that ¢, #° and p° satisfy (1.3) and that /(t95 —p°) =0.
Proof: We use results from [1] stating that

18



l € £
@) < C (Il + 16 = 0 lugceey + 1l + 12O~ Pl l1gee)) -
Vg (@)] < C (116° — pl psey + 16° = 0l gen))
IV ey < € (119160 = 09y a2y + 1165 — ¥l 2oy
v

Moreover, using the Sobolev injection (WY (RY) C LI(RY) for g € [N, oo[), the authors of [1] show
that
1% 1lr@ey < 30 Al 720 (eey < ClT I re pys 1 <0 < 00,

N +1yDA Ny < 21072 0 + YITIE: @2 ),

wlw

1 1
N+ Ty 2oz mey < CUIA+ YDz m2,0) 2 (T Lo r2,0))

3
2

1
< CUIA+ [yl pz@z,0) 2 (]| 2 0) 2-

This proves the first two assertions because I' € H*(R2, \) and |y|T" € L%(R2, \).
We also have

IVO™ |22y < O] 100" 11 m2) + 1000% | L2(R2))-
And equation 9.p° = > A (O¢Ym ¥ + YmO¢V,,) implies that

1yl (@ep™) L1 w2y < ClllyITllzz 2 p) 10T 12(r2,0) < C
since the Schrédinger equation implies that 9,I' € L2(R?, \).

Finally, we get

100° 1722y < CHAT || L2 (@2 0|
The right term is finite because W™P(R?) C L (R?) if % — % <0 (e.g. m=2and p=2) and then
p° belongs to L>®(R?). Indeed I' € L>®(R?, \) because I' € W22(R2, \).
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