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Abstract. This paper is devoted to the diffusion and anomalous diffusion

limit of the Fokker-Planck equation of plasma physics, in which the equilibrium
function decays towards zero at infinity like a negative power function. We use

probabilistic methods to recover and extend the results obtained in [22]. We

prove in particular, in the critical case where the classical diffusion coefficient
is no more defined, that the small mean free path limit gives rise to a diffusion

equation, with an anomalous time scaling and with a variance breaking.

1. Introduction and main results. We consider a collisional kinetic equation
given by {

∂tf + v · ∇xf = Q(f) in [0,∞)× Rd × Rd
f(0, x, v) = f0(x, v) in Rd × Rd. (1)

Such a problem naturally arises when modeling the behavior of a cloud of particles.
Provided f0 ≥ 0, the unknown f(t, x, v) ≥ 0 can be interpreted as the density
of particles occupying at time t ≥ 0, the position x ∈ Rd with a physical state
described by the variable v ∈ Rd representing the velocity of the particles.

As in [22], we focus in this paper on the Fokker-Planck equation when the colli-
sional operator Q has a diffusive form:

Q(f) := ∇v .
(

1

ω
∇v (f ω)

)
(2)
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and where the equilibria are characterized by the choice of ω. In the whole paper,
except the first section, we choose ω = ωβ for some β > d with

ωβ(v) = (1 + |v|2)β/2 , (3)

where Cβ is chosen such that

∫
Cβ
ωβ

dv = 1. Note that Q does not depend on x. We

shall denote by µβ (or simply µ) the measure
Cβ
ωβ
dv = Cβωβ

−1dv. This corresponds

to the so called Barenblatt profile or general Cauchy distribution. Note that Q is
nothing else but the adjoint operator (in L2(dv)) of

L = ∆v −
∇vω
ω

.∇v , (4)

which may be a more classical way to write the Fokker Planck operator as the sum
of a Laplacian operator and a potential.

Diffusion approximation
When the scattering phenomenon is much stronger than the advection phenom-

enon, one expects that the solution of (1) can be approximated by a density de-
pending on the time and space variable times a velocity profile given by the ther-
modynamical equilibrium.
More precisely, we introduce a small parameter ε � 1 which describes the mean
free path of the particles, then we consider the following rescaling

x′ = ε x and t′ = θ(ε) t, with θ(ε)→ 0.

Typically, it means that we assume that the time scale is very large as well as the
observation scale. In order to study this asymptotic, let us rescale the distribution
function

fε(t′, x′, v) = f(t, x, v).

The function fε is now solution of (we skip the primes)

θ(ε) ∂tf
ε + ε v · ∇xfε = Q(fε),

fε(0, x, v) = f0(x, v) .
(5)

The goal is then to study the behavior of the solution as ε→ 0.
The usual diffusion limit corresponds to θ(ε) = ε2 as in [22], where the result is

obtained in the particular situation of (3) by using the moment method which is by
now classical to derive limits of kinetic equations ([20] and references therein).

Probabilistic formulation
This problem has a natural probabilistic interpretation. Indeed, provided f0 is a

density of probability, by denoting by dBt a brownian motion, the solution f(t, x, v)
of (1) is the density of probability (with respect to Lebesgue’s measure) of the law
of the (stochastic) diffusion process given by the following stochastic differential
equation (S.D.E.)

dvt =
√

2 dBt −
∇vω
ω

(vt) dt (6)

dxt = vt dt ,



DIFFUSION WITH HEAVY TAILS 3

starting with initial distribution f0(x, v)dxdv. We shall give rigorous statements
later. The rescaling corresponds to the following: fε(t, x, v) is the density of prob-
ability of the joint law of(

xt = x0 + ε

∫ t/θ(ε)

0

vs ds , vt/θ(ε)

)
(7)

when (x0, v0) are distributed according to f0(x, v)dxdv. Notice that we rescaled
the initial data so that we do not have to rescale fε by 1/εd. We thus study the
joint law of (ζ(s)

∫ s
0
vudu, vs) when s → +∞, i.e. the joint law of the process vs

and some particular additive functional of the process. Note that ζ emphasize the
normalization by ε, i.e. ζ( t

θ(ε) ) = ε.

This approach was already used by the first named author together with D.
Chafai and S. Motsch [5] in the study of the so called persistent turning walker
model introduced in [12]. In [4], a rather general study of long time behavior of
additive functionals of ergodic Markov processes is done. The fact that one can
then derive the joint behavior of (ζ(s)

∫ s
0
vudu, vs) is explained in section 3 of [5]

(subsection: coupling with propagation of chaos and asymptotic independence) and
is granted in general situations, in particular the ones we will look at. It is this
propagation of chaos (in time) property which ensures the asymptotic splitting of
fε as a product of a function of x times a function of v.

The main goal of this paper is to study the case where the diffusion coefficient
is no more finite and actually, we focus here on the critical case where β = d + 4
and the case β < d + 4 is not addressed here. In this later case, note that, for the
Boltzmann equation (see [20, 21, 2, 3]), the limiting equation is a fractional diffusion
equation.

When β − d = 4, the following questions arise.

1. When β > d+2, v ∈ L2(µ), and then St defined by St = (Sit)
d
i=1 = (

∫ t
0
visds)

d
i=1

has a finite variance. But what is the long time behavior of Eµ(S2
t ) since the

diffusion coefficient is no more finite?
2. What is the “good” normalization st for Sit/

√
st to converge in distribution

? The natural choice would thus be st = Varµ(Sit). Several arguments in
[4] indicate that this will be the case only if Varµ(Sit) behaves like t times a
slowly varying function.

3. If such an st exists, what is the limiting distribution ?
4. What happens with the joint distribution, i.e. with the random vector St ?

Actually, when β = d + 4, we still get a diffusion limit as in [22], but with an
anomalous scaling. Such a phenomenon of anomalous rate of convergence to a
diffusion limit was already observed on other examples (see [13], [21]). An additional
feature here is that some variance breaking occurs. Indeed, if we calculate

aεt =

∫
x2i f

ε(t, x, v) dxdv

which does not depend on i, it is shown that aεt → 2κ t as ε→ 0, while the similar
second moment for the limiting density ρ is 2κt/3. This shows that there is a
convergence of the measures but no convergence for the second moment to the limit
of the second momentum of the converging measures.

Before proving this main result, we give a result for the classical diffusion result
in a more general setting, give the hypothesis on the equilibria required and recall
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classical probabilistic method that enable to handle this case. We then check that

this setting includes the equilibrium considered in this paper, i.e.
Cβ
ωβ

.

2. Main results.

2.1. Previous results. Let us define the functional ad hoc spaces
Y pω
(
R2d

)
= Lp

(
Rd, Hp(Rd)

)
, where

Hp(Rd) =

{
f : Rd → R,

∫
Rd
|f |p ωp−1 dv <∞

}
, (8)

where ω = (1 + ||v||2)
β
2 and

L∞ω (Rd) = {f : Rd → R, fω ∈ L∞(Rd)}.

Define

V =

{
f : Rd → R,

∫
Rd
|f |2 ω dv <∞ and

∫
Rd

|∇v(f ω)|2

ω
dv <∞

}
, (9)

V ′ being its dual.

Existence theorem. We recall the following theorem

Theorem 2.1. [22]Let ε be fixed. Assume that f0 ∈ Y 2
ω (Rd), equation (5) has a

unique solution f in the class of functions Y defined by:

Y =
{
f ∈ L2

(
[0, T ]× Rd, V

)
, θ(ε)∂tf + εv · ∇xf ∈ L2

(
[0, T ]× Rd, V ′

)}
.

Classical diffusion approximation. The case where β > d+4 leads to a diffusion
equation as described in the following theorem.

Theorem 2.2. [22] Assume that β > d + 4. Assume that f0 is a nonnegative
function in Y 2

ω ∩ Y pω with p > 2. Assume that θ(ε) = ε2, let fε be the solution of
(5) in Y with initial data f0.

Then, fε converges weakly star in L∞
(
[0, T ], Y pω (R2d)

)
towards ρ(t, x)

Cβ
ωβ

where

ρ(t, x) is the unique solution of the heat equation

∂tρ−∇x.(D∇x)ρ = 0

with initial datum ρ0(x) =
∫
f0(x, v)dv where D is the constant diffusion tensor

given by

D =

∫
v ⊗Q−1(v Cβ ω

−1
β (v))dv.

Note that H∗ = Q−1(v Cβ ω
−1
β (v)) has an explicit shape. The diffusion coefficient

is thus similar to

D ∼
∫
v ⊗ v
ν(v)

1

(1 + |v|2)
β
2

dv with ν ∼ 1

|v|2

and then, the constraint β > d + 4 corresponds to the range that ensure that the
diffusion coefficient is finite.
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2.2. Main results. We first prove via probabilistic methods a reformulation of
theorem 2.2

Theorem 2.3. Assume that β > d+ 4. Assume that f0 is a density of probability.
Let ω−1 = Cβ ω

−1
β . Assume that θ(ε) = ε2, the solution fε of (5) weakly converges

as ε→ 0 towards ρ(t, x)ω−1(v) where ρ is the unique solution of the heat equation

∂tρ−∇x.(D∇x)ρ = 0

with initial datum ρ0(x) =
∫
f0(x, v)dv. Here weak convergence means

lim
ε→0

∫
F (x, v) fε(t, x, v) dxdv =

∫
F (x, v) ρ(t, x)ω−1(v) dxdv ,

for all t and all F which is continuous and bounded.
Moreover, let H = L−1(v), we have

D =

(∫
|∇H|2 ω−1 dv

)
Id =

∫
HL(H)dv Id =

∫
vL−1(v)dv Id,

where Hi = vi (a|v|2 + b) with a = 1
4+2d−3β and b = 3

4+2d−3β .

Notice that we can also assume that the initial condition is a Dirac mass δx0,v0 .
The type of convergence we obtain is different from the one in [22]. Furthermore it
can be extended to a multi-time convergence.

The main result of this paper concernes the critical case as follows

Theorem 2.4. Assume that β = d + 4. Let xt be defined in (7), then there exists
κ > 0 such that, for each i,

1. Varµ(xit)/(t ln t) → κ > 0 as t→ +∞,

2. the normalized additive functional xt/
√

Varµ(xit) converges in distribution to
a centered gaussian vector with covariance matrix (1/3) Id.

Thus, with θ(ε) = ε2 ln(1/ε), for all initial density of probability f0, the solution fεt
of (5) weakly converges as ε → 0 towards (Cβ ω

−1
β (v) ρ(t, x) where ρ is solution to

the diffusion equation

∂tρ−
2κ

3
∆ρ = 0

with initial datum ρ0(x) =
∫
f0(x, v) dv.

Strategy of the proof of Theorem 2.4
The proof is based on the Lindeberg method in the central limit theorem for

mixing sequences and is constructed as follows.

1. Use some cut-off functions K(t) directly on H = L−1(v). To this end, for
K > 0, we define

HK(v) = bv + av|v|2 1|v|≤K + a

(
3K2 v − 2K3 v

|v|

)
1|v|>K . (10)

Define vK = LHK .

Remark 1. Actually it is easier to use a cut-off on H rather than on v,
introducing some bounded vK , since then we do not know the explicit solution
of the Poisson equation LHK = vK .

2. Define SKt =

∫ t

0

vK(vs) ds, we shall compute the covariance matrix of SKt .
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3. Choose some Kj(t) (j = 1, 2) growing to infinity with t such that on one hand

(St − SK2(t)
t )/

√
s
K2(t)
t → 0 as t→ +∞ in L2(µ),

so that Varµ(St) will be asymptotically equal to s
K2(t)
t , on the other hand

(St − SK1(t)
t )/

√
s
K1(t)
t → 0 in Probability (or for instance in L1(µ)).

4. Prove some Central Limit Theorem for S
K1(t)
t /

√
s
K1(t)
t , so that the same

Central Limit Theorem will be available for St/

√
s
K1(t)
t thanks to Slutsky’s

theorem.
As we said, the difference between K1(t) and K2(t) will thus explain the

anomalous rate of convergence since the normalization will not be the asymp-
totic square root of the variance.

It is worth noticing that the key of the result is the choice of K1(t) that has to be
chosen in order to satisfy two conditions:

a good cut-off property and some central limit theorem for S
K1(t)
t /

√
s
K1(t)
t .

Outline of the paper
In a first section, we shall rephrase the problem in a probabilistic way, show how

to recover the same kind of result as Theorem 2.2 for a large class of weights ω by
using arguments in [4] and check that the Barenblatt equilibria considered in this
paper are covered by this study in order to show Theorem 2.3. In section 4, we
shall prove Theorem 2.4 by following the strategy of the proof.

Notations : We shall make the following abuse of notation, denoting simply by
v the function v 7→ v.
< U, V > will denote the scalar product in Rd when U, V are vectors in Rd. < M >
will denote the martingale bracket, when M is a martingale.
C will denote a constant that may change from line to line.

Acknowledgements. We would like to thank Ph. Laurençot, A. Mellet and
A. Vasseur for fruitful discussions.

3. Classical rate of convergence. In this section we recall basic facts about long
time behavior of stochastic diffusion processes and show the link between long time
behavior and diffusion approximation. We then provide a proof of Theorem 2.3
in order to give a dictionary between the deterministic and the stochastic point of
view.

3.1. PDE/SDE and semigroup reformulation.

Come back to the S.D.E. (6). Let us consider general functions ω satisfying the
following assumptions
Hypotheses H.

1. H1 ω > 0 is smooth (C2 or C∞) and
∫
ω−1 dv = 1. We thus define the

probability measure µ(dv) = ω−1(v) dv.
2. H2 there exists c ∈ R such that for all v, 〈v,∇ω〉 ≥ c ω(v). The latter

condition is sometimes called a drift condition.
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If (H) is satisfied, it is known that (6) has a unique non explosive solution starting
from any v0. Indeed, local existence follows from the smoothness of the coefficients,
and H2 ensures that v 7→ |v|2 is a Lyapunov function for Hasminskii’s explosion test
[14]. In addition µ is the unique invariant probability measure for the process, and
is actually symmetric. This means that for all g, h ∈ C∞0 ,∫

gLh dµ =

∫
hLg dµ .

We may thus define for g ∈ C∞b ,

Ptg(v) = etLg(v) = Ev0(g(vt))

the associated semi-group, Ev0 being the expectation when the process starts from
v0. This semi-group extends to all Lp(µ) spaces, and is self-ajoint in L2(µ). It is a
Markov semi-group, i.e. Pt1 = 1 (1 being here the constant function). Furthermore,
the operator norm of Pt acting on Lp(µ) is equal to 1.
Thanks to symmetry, if h ≥ 0 satisfies

∫
hdµ = 1 and if the law of v0 is given by

hµ, the law of vt is exactly Pthµ. In other words the solution of

∂tf = Q(f) with f0(v) = (hω−1) (v) (11)

is given by

f = Pt (f0 ω) (v)ω−1(v) .

3.2. Ergodic behavior, long time behavior.

If we look at (5) without the transport term (or if one wants with an initial datum
only depending on v), the asymptotic behavior as ε → 0 is given by the long time
behavior of the semi-group Pt.

We shall now recall some known facts about this long time behavior.

Denote

Lp0(µ) = Lp(µ) ∩ {g ∈ L1(µ);

∫
gdµ = 0}

the hyperplane of Lp whose elements have zero mean. If 1 ≤ p ≤ r ≤ +∞, and T
is a bounded operator from Lr0(µ) into Lp0(µ) introduce

|T |rp = sup

{
g 6= 0 ∈ Lr0(µ);

‖ Tg ‖p
‖ g ‖r

}
(12)

the operator norm of T .
The operator Pt is bounded from Lp0(µ) into Lp0(µ), and |Pt|pp ≤ 1. Next result is
due to Roeckner and Wang [23]. A stronger version is contained in [9].

Proposition 1. Assume that hypotheses (H) are satisfied.
Then α(t) := |Pt|∞,2 → 0 as t→ +∞.

Notice that thanks to the semi-group property and the stability of Lp0(µ), as
soon as |Pt0 |pp < 1 for some t0 > 0 and some 1 < p < +∞, then |Pt|pp ≤ Kp e

−λp t

for some Kp and λp > 0. Applying the Riesz-Thorin interpolation theorem in an
appropriate way (see [8]) one deduces that the same holds for all 1 < p < +∞. It
follows the following alternative

either |Pt|pp = 1 for all 1 < p < +∞, or |Pt|pp ≤ Kp e
−λp t for all 1 < p < +∞.

(13)
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Remark 2. If there exist c and λ > 0 such that α(t) ≤ c e−λt, then |Pt|22 ≤ e−λt.
The last statement is equivalent to the fact that µ satisfies a Poincaré inequality

for all smooth f ∈ L2
0(µ) ,

∫
|f |2dµ ≤ 1

λ

∫
|∇f |2dµ . (14)

As it is well known, (14) gives a spectral gap and implies the existence of some
exponential moment for µ. Since this property is not satisfied for the Barenblatt
profile ω = ωβ , there is no spectral gap and one cannot expect in our case some
exponential convergence.

The long time behavior is now summarized in the following proposition that gives
a first result in a very particular case where everything is independent of x

Proposition 2. Consider the equation (11). Assume that (H) is satisfied and, for
simplicity that C = 1 in (H1), and that f0 ≥ 0 is such that

∫
f0dv = 1.

If f0 ω ∈ Lr(ω−1dv) for some r > 1, then the solution ft = Pt(f0ω)ω−1 of (11)
converges as t → +∞ towards ω−1 in the following sense: for all 1 ≤ p < r there
exists some α(r, p, t)→ 0 as t→ +∞, such that(∫

|Pt(f0ω)− 1|pω−1 dv
) 1
p

≤ C(p, r)α(r, p, t)

(∫
|(f0ω)− 1|rω−1 dv

) 1
r

.

In other words for all r > p ≥ 1, if f0 ∈ Lr(ωr−1 dv), ft → ω−1 in Lp(ωp−1 dv).

Proof. A simple application of Riesz-Thorin interpolation theorem to Tt defined by
Ttg = Ptg −

∫
g dµ with the pairs (∞, 2) and (q, q) furnishes

for r > p ≥ 2, α(r, p, t) ≤ c(p, r)α2( 1
p−

1
r )(t) . (15)

Another simple proof is contained in [4] lemma 5.1. For 1 ≤ p < r ≤ 2 we obtain
the result by duality and for 1 ≤ p ≤ 2 < r by a simple combination, thus

for 2 ≥ r > p ≥ 1, α(r, p, t) ≤ c(r, p)α2( 1
p−

1
r )(t) , (16)

for r > 2 ≥ p ≥ 1, α(r, p, t) ≤ c(r, p)α2( 1
p−

1
r )(t/2) .

Proposition 1 concludes the proof.

We shall come back later to the rate of convergence α which is of key importance
for our problem.

3.3. Additive functional and the central limit theorem.

As we said in the introduction, the propagation of chaos (in time) property ex-

plained in [5] allows us to look separately at vt/θ(ε) and ε
∫ t/θ(ε)
0

vs ds to get their
asymptotic joint law. The asymptotic behavior of such additive functionals is well
understood when v ∈ L2(µ). It is much less understood when v ∈ Lp(µ) for some
p < 2 (and not in L2(µ)).

For the latter situation nothing is known in the continuous time setting of this
paper. In a discrete time setting some results have been obtained in [15, 10].

When v ∈ L2(µ), we shall recall here the essential results explained in [4] ( see
also previous results quoted in the bibliography in [4]). Notice that we are facing
here an additional difficulty since the integrand is vector valued.
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From now on, we will thus assume that∫
v dµ = 0

∫
|v|2 dµ < +∞ . (17)

Denote by

Sit =

∫ t

0

vis ds and sijt = Eµ(Sit S
j
t ) . (18)

The asymptotic behavior of St is given by the so called central limit theorem for
additive functionals (a stronger form is called Donsker invariance principle or func-
tional central limit principle). This principle tells us how to normalize S. to ensure
the convergence of its law (or probability distribution) to a gaussian law.

Definition 3.1. We say that S. satisfies a multi-times central limit theorem (MCLT)
at equilibrium with rate ζ and asymptotic covariance matrix Γ, if for every finite
sequence 0 < t1 ≤ ... ≤ tn < +∞,

ζ(η)
(
St1/η, ..., Stn/η

)
→ (Bt1 , ..., Btn)

in law as η → 0, where (B.) is a Brownian motion on Rd with covariance matrix Γ.
If the previous holds only for n = 1 (one time) but all t, we say that (CLT) is
satisfied (the limit being then a gaussian vector).

Notice that in the previous definition, we assumed that the initial distribution of
v0 is the invariant distribution µ. We shall similarly use the terminology (MCLT)
out of equilibrium when we can replace µ by some other initial distribution. Note
that there is a slight difference between the definition stated here and the definition
of (MCLT) in [4].

Notice also that the result gives a multi-time Central limit theorem but that only
the Central Limit Theorem has a traduction in term of PDE.

A gathering of results of [4]) gives a general setting (general conditions on the
equilibria, i.e. on µ = ω−1dv) on which classical diffusion is proved as summarized
below.

Theorem 3.2. [4] Assume that (H), (17) is satisfied. If

V :=

∫ +∞

0

‖ Ptv ‖22 dt < +∞ . (19)

is satisfied, then S. satisfies the (MCLT) at equilibrium, with rate ζ(η) =
√
η and

asymptotic covariance matrix (or effective diffusion tensor)

Γij = 4

∫ +∞

0

(∫
Ptv

i Ptv
j dµ

)
dt.

Theorem 3.3. [4] The conclusion of Theorem 3.2 still holds true out of equilibrium
provided the law of the initial condition is either a Dirac mass δv0 or is absolutely
continuous w.r.t. µ.

As a corollary we obtain (since x+Bt is still a Brownian motion with mean x)

Corollary 1. [4] Assume that (H) holds true (with C = 1 for simplicity). Consider
(5) with f0 ≥ 0 such that

∫
f0(x, v) dxdv = 1. Assume in addition that (17) is

satisfied.
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Then, provided (19) is satisfied, choosing θ(ε) = ε2, the solution fε of (5) weakly
converges as ε→ 0 towards ρ(t, x)ω−1(v) where ρ is the unique solution of the heat
equation

∂tρ−∇x.(Γ∇x)ρ = 0

with initial datum ρ0(x) =
∫
f0(x, v)dv. Here weak convergence means

lim
ε→0

∫
F (x, v) fε(t, x, v) dxdv =

∫
F (x, v) ρ(t, x)ω−1(v) dxdv ,

for all n, all t and all F which is continuous and bounded.

In particular the result holds true as soon as
∫ +∞
0

α2(p, 2, t) dt < +∞.
Assume that a solution H of LH = v exists and satisfies :

H ∈ L1
0(ω−1dv) and ∇H ∈ L2(ω−1dv).

Then

Γij = 2

∫
< ∇Hi,∇Hj > ω−1 dv .

There are mainly three approaches to get (MCLT) in our situation: the Kipnis-
Varadhan theorem, mixing and a martingale approach. We give a brief presentation
of the first one.

Kipnis-Varadhan approach
We shall say that the Kipnis-Varadhan condition is satisfied if (19) is satisfied.
The proof uses reversibility, i.e.

sijt = 2

∫
0≤u≤s≤t

(∫
Pu/2v

i Pu/2v
j dµ

)
duds . (20)

si,jt being defined in (18). In this situation, using Cesaro rule, we obtain

sij(t)

t
→ 4V ij = 4

∫ +∞

0

(∫
Ptv

i Ptv
j dµ

)
dt < +∞ as t→ +∞. (21)

Kipnis-Varadhan theorem [16], revisited in [4] Theorem 3.3. and Remark 3.6.
(which immediately extend to the multi-dimensional setting) gives theorem 3.2.

As discussed in Remark 3.6 of [4] a sufficient condition for (19) to be satisfied is
the following: let H1

0 = L2
0 ∩ {g ; ∇g ∈ L2(µ)}. Then (19) is satisfied as soon as(∫

vi g dµ

)2

≤ ci
∫
|∇g|2 dµ for all i = 1, ..., d and all g ∈ H1

0 . (22)

Now we may apply all the results of section 8 in [4], since our model fulfills all
assumptions therein. We can now use theorem 3.3 to obtain (MCLT) out of equi-
librium (see Theorem 8.6 in [4]).

Remark 3 (Martingale approach). If one can obtain the Kipnis-Varadhan theo-
rem by using an approximate martingale method (see [4] Theorem 3.3), the (true)
martingale method is the most popular method for studying additive functionals,
and is actually used in [5]. This method is based on the following idea: assume that
we can find a solution to the Poisson equation (which here is vectorial)

LH = v . (23)
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Applying Ito’s formula we have

St = H(vt)−H(v0)−
√

2

∫ t

0

∇H(vs).dBs ,

so that, provided the boundary terms are in a sense neglectable, the asymptotic be-

havior of St is equivalent to the one of the martingale term Mt =
√

2
∫ t
0
∇H(vs).dBs

for which (MCLT) is known for a long time.
Formally the solution of (23) satisfying

∫
Hdµ = 0 (still assuming (17)) is given

by

H = −
∫ +∞

0

Ptv dt

which exists in L2(µ) if and only if∫ +∞

0

s ‖ Psv ‖22 ds < +∞

according to [4] corollary 3.2.
This condition is stronger than (19) so that, from a general point of view, there is

no possible gain by using this strategy, except the following: provided the martingale
term is in L2(µ), we only need that H ∈ L1(µ). For instance it is enough that∫∞
0
‖ Ptv ‖1 dt < +∞, which holds in particular when v ∈ Lp(µ) for some p > 1

and
∫ t
0
α(p, 1, t) dt < +∞. But in this situation we need ∇H ∈ L2(µ) to ensure

that the martingale term is squared integrable.
It is very hard in general to explicitly control Ptv since even if we know some

bound for α(t), which is the case in many situations, this bound only furnishes
upper bounds. It turns out, that in some specific cases, one can directly solve (23).
As shown in [22], it can be done for ω = ωβ . In addition, in this situation one
obtains an explicit expression for the effective diffusion tensor.

3.4. Application to Barenblatt/Cauchy profiles, proof of theorem 2.3.

Here we shall only look at the case ω−1 = Cβ ω
−1
β i.e. the general Cauchy distri-

bution also known as Barenblatt profile. This case is partly discussed in subsection
5.4.1 of [4], but we shall here give more detailed results.

In order to find the range of parameters for which the assumptions of Corollary
1 are satisfied, we need the following lemma.

Lemma 3.4. Recall that α(t) = |Pt|∞,2, Pt being the semigroup associated to the
operator L given by (4), we have the following estimate

α(t) ≤ C(β, d)

t(β−d)/4
.

Proof. In order to calculate α(t) we shall use the optimal weak Poincaré inequality
obtained in [6] (improving on [23]): there exists some constant C(d, β) such that
for all nice f with

∫
f dµ = 0 it holds for all s > 0,∫
f2 dµ ≤ C s−2/(β−d)

∫
|∇f |2 dµ+ s ‖ f ‖2∞ . (24)

An easy optimization in s furnishes for these f ’s, the Nash type inequality∫
f2 dµ ≤ C

(∫
|∇f |2 dµ

) β−d
β−d+2 (

‖ f ‖2∞
) 2
β−d+2 . (25)
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In order to stay self-contained, we recall Theorem 2.2 in [17]

Theorem 3.5. [17] Liggett theorem
Let L be a linear operator generating a Markov Semi-group Pt.
Define E(f, f) = −Eµ(f(Lf), if a Nash type inequality

Eµ(f2) ≤ E(f, f)1/pΦ(f)1/q with p−1 + q−1 = 1

holds, with Φ satisfying Φ(Ptf) ≤ Φ(f), then there exists c > 0 such that

Eµ((Ptf)2) ≤ Φ(f)t1−q, t > 0, f ∈ L2(µ), Eµ(f) = 0.

It follows that for all t ≥ 1,

α2(t) ≤ c(β, d)

t(β−d)/2
, hence α2(p, 2, t) ≤ c(β, d, p)

t(β−d)(
1
2−

1
p )
. (26)

Proof. Proof of Theorem 2.3
Note that µ = ω−1β dv satisfies (17) and that α2 is integrable if and only if

(β − d)

(
1

2
− 1

p

)
> 1 .

Recall that v ∈ Lp(µ) if and only if β − d > p, so that we may apply Corollary 1
provided β > d+ 4.

As we said in the previous section, we can here explicitly solve the Poisson
equation

LH = v .

Inspired by the calculation in [22] we search for

Hi = vi (a|v|2 + b) .

Notice that the vi’s are exchangeable, so that a and b are the same for all compo-
nents. As in [22] we get

a =
1

4 + 2d− 3β
, b =

3

4 + 2d− 3β
,

except if β = 2d+4
3 which is impossible if v ∈ L2, i.e. β > d+ 2.

Now |∇H|2 behaves like |v|4, so that it is integrable if and only if β > d+ 4. In
this situation H ∈ L1

0(µ). We may thus apply the last part of Corollary 1 , which
furnishes an explicit expression for Γij , the one obtained in [22].

Notice that

Γij =

∫
< ∇Hi,∇Hj > ω−1 dv = 0 ,

for i 6= j, and Γii = γ does not depend on i, all these properties being easy
consequences of symmetries.

We thus have theorem 2.3.

4. Anomalous rate of convergence: a critical case. We shall look now at the
critical case β − d = 4, for which |∇H| does no more belong to L2(µ).
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4.1. Properties of the truncated quantities HK and vK . We gather in a
lemma that we will admit all the usefull facts about HK and vK .

Lemma 4.1. We have the following properties
• For K > 0, define

HK(v) = bv + av|v|2 1|v|≤K + a

(
3K2 v − 2K3 v

|v|

)
1|v|>K . (27)

1. Note that HK is of class C1 and also is in L1
µ,

2. It’s second derivatives exist and are continuous for |v| 6= K
3. There exists a constant C such that |∇HK | ≤ CK2

4. If β − d = 4,

µ(|Hk|p) ≤ CK3p−β+d = CK3p−4 and µ(|∇HK |2) ≈ C lnK (28)

5. Once p > 2,
µ(|∇HK |p) ≤ CK2p+d−β = CK2p−4 . (29)

• Define vK = LHK , for |v| > K,

vK(v) = v

(
2a(d− 1)K3

|v|3
− 3aβ K2

1 + |v|2
− bβ

1 + |v|2

)
,

there exists C > 0 such that

|vK(v)− v| ≤ C |v|1|v|≥K . (30)

4.2. Computation of Eµ((SKt )2).

In the sequel we shall sometimes simply write K instead of K(t) to simplify
the notation. Since ∇Hi

K ∈ L2(µ) for all i, we may compute the covariance matrix
of SKt = (Siti,K)di=1. Note that, if we define for θ ∈ Sd, sKt = Varµ(< θ, SKt >), sKt
does not depend on θ.

Let us prove

Lemma 4.2. If β − d = 4, then provided K(t) �
√
t lnK(t), there exists κ′ > 0

such that for all i = 1, ..., d

Eµ((S
i,K(t)
t )2)

t lnK(t)
→ κ′ as t→ +∞ .

Proof. Though Hi
K is not C2, ∂2Hi

K is piecewise continuous, and we may apply the
extended Ito’s formula (sometimes called Meyer-Ito formula) to write

Si,Kt = Hi
K(vt)−Hi

K(v0)−
√

2

∫ t

0

< ∇Hi
K(vs), dBs > . (31)

We denote by M i,K
. the martingale

√
2
∫ .
0
< ∇Hi

K(vs), dBs > with brackets

〈M i,K〉u = 2

∫ u

0

|∇Hi
K |2(vs) ds.

Since all Si have the same distribution, from now on we skip the superscript i.
The key point is that, since µ is reversible, if v0 is distributed according to µ,

s 7→ vt−s has the same distribution (on the path space up to time t) as s 7→ vs. We
may thus write

SKt =

∫ t

0

vK(vt−s) ds = HK(v0)−HK(vt)− M̂K
t ,
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where M̂K
. is a backward martingale with brackets

〈M̂K〉u = 2

∫ u

0

|∇HK |2(vt−s) ds.

In particular we have the following decomposition, known as Lyons-Zheng decom-
position

SKt = − 1

2

(
MK
t + M̂K

t

)
.

Another application of the reversibility property is the following: provided SKt and
HK are square integrable,

Eµ(SKt (HK(vt)−HK(v0))) = 0.

It follows

Eµ((SKt )2) + Eµ((HK(vt)−HK(v0))2) = Eµ((MK
t )2) = Eµ((M̂K

t )2) .

Now thanks to stationarity

Eµ((MK
t )2) = 2t µ(|∇HK |2).

It follows if β − d = 4, by (28), ∃κ′ such that

Eµ((MK
t )2) = κ′ t lnK + t o(lnK).

At the same time,

Eµ((HK(vt)−HK(v0))2) = 2µ(|HK |2) − 2Eµ(HK(v0)HK(vt))

= 2µ(|HK |2) − 2µ(|Pt/2HK |2).

Since by (28), µ(|HK |2) ≈ C ′(d, β)K2, we get

Eµ((HK(vt)−HK(v0))2) ≤ CK2

and thus, if we choose K(t)�
√
t lnK(t),

Eµ((HK(vt)−HK(v0))2)� Eµ((MK
t )2).

Then

Eµ((S
i,K(t)
t )2)

t lnK(t)
∼ Eµ((MK

t )2)

t lnK(t)
→ κ′.

Notice that, since µ(< ∇Hi
K ,∇H

j
K >) = 0 for j 6= i, the martingales M i,K and

M j,K are orthogonal, and we have in fact

1

t lnK(t)
Covµ(SKt ) → κ′ Id.
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4.3. Computation of Eµ((Sit)
2).

Lemma 4.3. In the case where β − d = 4, there exists κ such that

1

t ln t
Eµ((Sit)

2)→ κ as t→ +∞. (32)

Proof. We may decompose St = (St − SKt ) + SKt so that Eµ((Sit)
2) will behave like

Eµ((Si,Kt )2) provided Eµ((Si,Kt )2)� Eµ((Sit − S
i,K
t )2).

Now

Eµ(|St − SKt |2) = 2Eµ
(∫ t

0

∫ s

0

(vu − vK(vu))(vs − vK(vs)) du ds

)
= 2

∫ t

0

∫ s

0

Eµ (g Ps−ug) du ds

≤ C t

∫ t/2

0

‖ Psg ‖2L2
µ
ds , (33)

where g = v − vK has zero µ mean and |g(v)| ≤ C|v|1|v|≥K according to (30).
Recall that g ∈ Lp(µ) for p < β − d, and that,

‖ g ‖p
Lpµ
≤ C

β − d− p
Kp+d−β .

Actually, all choices of p will give the same rough bounds. So just take p = 2 and
apply the contraction property of the semi-group, which yields

Eµ(|St − SKt |2) ≤ C (t2/K2) . (34)

Hence, with our previous notations, one good choice for K2(t) is
√
t, yielding the

correct asymptotic behavior for the variance of St and κ = 1
2 κ
′ for the κ′ in Lemma

4.2. According to Lemma 4.2 and to (34), choosing

K2 lnK � t� K2/ lnK by taking K(t) =
√
t (35)

we get in one hand

Eµ(|St − SKt |2)

t lnK(t)
≤ Ct2

K2(t)t ln k(t)
=

2C

ln t
→ 0

and in another hand

Eµ((S
i,K(t)
t )2)

t ln t
→ κ′ (36)

which finally leads to

Eµ((Si,t )2)

t lnK(t)
→ κ′

2

which concludes the proof.
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4.4. Approximation of St in Probability, i.e. finding K1(t).

We want to find K1(t) such that

(St − SK1(t)
t )/

√
Varµ(S

K1(t)
t )

goes to 0 in Probability, as t→ +∞. As we have seen, convergence in L2(µ) holds
for K2(t)� t/ ln t, but convergence in L1(µ) will hold in more general situations.

Lemma 4.4. If K(t)� (t/ ln t)1/6, then

|St − SK(t)
t |√

t lnK(t)
→ 0 in L1(Pµ).

Proof. Indeed,

Eµ

(
|St − SK(t)

t |√
t lnK(t)

)
≤ t√

t lnK(t)
µ(|v − vK(t)(v)|) ≤ C(d)

t√
t lnK(t)K3(t)

,

will go to 0 as soon as
K(t)� (t/ ln t)1/6 . (37)

This lemma shows that if we choose K(t) = tν , then ν ≥ 1
6 . So we may take

K1(t) = t1/6, while K2(t) = t1/2. Why choosing K1(t) = t1/6 ? Recall that K1(t)

has to be such that the truncated S
K1(t)
t will satisfy some CLT with an appropriate

rate. It is thus natural to think that the smaller K1(t) is, the better for the CLT,
since all involved quantities will be as small as possible. Since one can also think
that an additional slowly varying function will not change the situation, this choice
seems to be the best one. We shall see in section 4.5 that this choice is not only
appropriate but is the good polynomial order to prove the required CLT.

Remark 4. Notice that as t → +∞, (Covµ(St)/t ln t) → κ Id for some κ > 0,

while (Covµ(St
1/6

t )/t ln t) → 1
3κ Id. Since St/

√
t ln t and St

1/6

t /
√
t ln t have the

same behaviour in distribution, if Sit/
√

Varµ(Sit) converges in distribution to some
limiting distribution, this limiting distribution will have a variance less than or
equal to 1/3, i.e. there is a variance breaking. ♦

Remark 5. Since (St−St
1/6

t )/
√
t ln t is bounded in L2, convergence to 0 in Proba-

bility or in L1 are equivalent thanks to Vitali’s integrability theorem. So the power
1/6 is actually the best we can obtain for applying Slutsky’s theorem. ♦

4.5. Central Limit Theorem.

In order to prove the convergence in distribution of S
K(t)
t /

√
st with K(t) = tν

(ν ≥ 1
6 according to subsection 4.4), and st = t ln t, we apply a Central Limit

Theorem (CLT) for triangular arrays. Such results go back to Lindeberg for trian-
gular arrays of independent variables, and have been extended by many authors for
weakly dependent variables.

In the sequel K(t) = tν will be abridged in K when no confusions are possible.
In addition as we previously did we skip the index i in all quantities, and finally
κ > 0 denotes the limit as t→ +∞ of Varµ(St)/t ln t as in (36).
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The main part of this section is the proof of the following Lemma :

Lemma 4.5. If β − d = 4, for i = 1, ..., d define st = Eµ((Sit)
2).

1. there exists κ > 0 such that st/(t ln t)→ κ as t→ +∞.

2. Sit/
√
t ln t converges in distribution to a centered gaussian random variable

with variance equal to κ/3.

Proof. Note that we will first prove a central limit theorem starting from initial
data that are equilibria. The generalization to MCLT is addressed at the end of the
proof of this lemma. Come back to (31). Since HK(t)(vs)/

√
st goes to 0 in L1(µ)

for s = 0 and s = t,

SKt −MK
t√

st
→ 0

where

MK
. =

√
2

∫ .

0

∇HK(vs) dBs.

Since (CLT) are written for mixing sequences we introduce some notations. For
N = [t], and n ∈ N, we define

Zn,N =

√
2√

N lnN

∫ n+1

n

∇HK(vs) dBs .

Hence, (1/
√
t ln t)SKt = SN + R(t) with SN =

∑N
n=0 Zn,N and R(t) goes to 0 in

L2(µ).
Of course, under Pµ (i.e. starting from equilibrium) the sequence Z.,N is sta-

tionary and since the Zj,N ’s are martingale increments, their correlations are equal
to 0. This will be a key point in the proof and explains why we are using these
variables instead of directly look at the increments of S.. We skip the subscript µ
in what follows, when there is no possible confusion.

According to Lemma 4.2, since K(t) = tν , κN := Varµ(SN )→ 2ν κ as N → +∞.
Let γ be a standard gaussian r.v., it is thus enough to show that

lim
N→∞

∆N (h) = 0,

where we set,

∆N (h) = Eµ (h(SN )− h(
√
κN γ))

and where h denotes some complex exponential function h(x) = ei λ x, λ ∈ R.

Now we follow Lindeberg-Rio method to study the convergence in distribution
of SN to a centered normal distribution with variance 2ν κ.

The idea is to decompose ∆N into the sum of small increments using the hierar-
chical structure of the triangular array.

Denote, for j ≥ 0,

Sj,N =

j∑
n=0

Zn,N =

√
2√

N lnN

∫ j+1

0

∇HK(vs) dBs .
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Define vj,N = Varµ(Sj,N ) − Varµ(Sj−1,N ), where S−1,N = 0. Thanks to the
martingale property

vj,N = E(Z2
j,N ) =

2

N lnN
E
(∫ 1

0

|∇HK(vs)|2 ds
)

= vN =
κN
N + 1

≤ C/N .

Introduce gaussian random variables Nj,N ∼ N (0, vN ) ( vN > 0). The sequence
(Nj,N )1≤j≤N+1 , N≥1 is assumed to be independent and independent of the sequence

(Zj,N ). For 1 ≤ j ≤ N , we set Tj,N =
∑N+1
k=j+1Nk,N , empty sums are, as usual, set

equal to 0. In particular T0,N has the same distribution as
√
κNγ.

We are in position to use Rio’s decomposition

∆N (h) =

N∑
j=0

∆j,N (h), (38)

with ∆j,N (h) = E (h(Sj−1,N + Zj,N + Tj+1,N )− h(Sj−1,N +Nj+1,N + Tj+1,N )).

Again we decompose ∆j,N (h) = ∆
(1)
j,N (h)−∆

(2)
j,N (h), with

∆
(1)
j,N (h) = E(h(Sj−1,N + Zj,N + Tj+1,N ))− E(h(Sj−1,N + Tj+1,N ))

− vj,N2 E(h′′(Sj−1,N + Tj+1,N )),

(39)

∆
(2)
j,N (h) = E(h(Sj−1,N +Nj+1,N + Tj+1,N ))− E(h(Sj−1,N + Tj+1,N ))

− vj,N2 E(h′′(Sj−1,N + Tj+1,N )).

(40)

Define the functions

x→ hj,N (x) = E(h(x+ Tj+1,N )) = e−λ
2 κN ((N−j+1)/2(N+1)) h(x) .

Using independence (recall the definition of Tj,N ), one can write

∆
(1)
j,N (h) = E(hj,N (Sj−1,N + Zj,N ))− E(hj,N (Sj−1,N ))− vj,N

2
E(h′′j,N (Sj−1,N )),

∆
(2)
j,N (h) = E(hj,N (Sj−1,N +Nj+1,N ))− E(hj,N (Sj−1,N ))− vj,N

2
E(h′′j,N (Sj−1,N )) .

• Bound for ∆
(2)
j,N (h).

Taylor expansion yields the existence of some random variable τj,N ∈ (0, 1) such
that :

∆
(2)
j,N (h) = E(h′j,N (Sj−1,N )Nj+1,N ) +

1

2
E(h′′j,N (Sj−1,N )(N2

j+1,N − vj,N ))

+
1

6
E(h

(3)
j,N (Sj−1,N + τj,NNj+1,N )N3

j+1,N ) .

Using independence, we see that the first two terms vanish. In addition since the

third derivative of h is bounded we get |∆(2)
j,N (h)| ≤ C E(|Nj+1,N |3), hence, since N

is gaussian,

|∆(2)
j,N (h)| ≤ C v

3/2
j,N ≤ C N−(3/2) .

It follows that ∆
(2)
N (h) =

∑N
j=0 ∆

(2)
j,N (h) ≤ C N−(1/2) goes to zero.
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• Bound for ∆
(1)
j,N (h). Set ∆

(1)
j,N (h) = E(δ

(1)
j,N (h)).

Then, using Taylor formula again (with some random τj,N ∈ (0, 1)), we may write

δ
(1)
j,N (h) = h′j,N (Sj−1,N )Zj,N + 1

2h
′′
j,N (Sj−1,N )(Z2

j,N − vj,N )

+ 1
6

(
h
(3)
j,N (Sj−1,N + τj,NZj,N )Z3

j,N

)
.

We analyze separately the terms in the previous expression.

The first term vanishes thanks to the martingale property of Z.

The last term can be bounded in the following way

|E(h
(3)
j,N (Sj−1,N + τj,NZj,N )Z3

j,N )| ≤ C E(|Z3
j,N |) .

We use K = tν , Burkholder-Davis-Gundy inequality and Jensen’s inequality to get

E(|Z3
j,N |) ≤ C (N lnN)−(3/2) E

((∫ 1

0

|∇HK(vs)|2 ds
) 3

2

)
≤ C (N lnN)−(3/2) µ(|∇HK |3) ≤ C (N lnN)−(3/2)K2

≤ C N−(3/2)+2ν (lnN)−(3/2) , (41)

so that summing up from j = 0 to j = N we obtain a term going to 0 if ν ≤ 1
4 .

It remains to prove

N∑
j=0

Eµ(h′′j,N (Sj−1,N )(Z2
j,N − vj,N ))→ 0.

To this end, we split the sum in two terms:
∑
j≤N ′ and

∑
N ′<j≤N .

Since |Aj | = |Eµ(h′′j,N (Sj−1,N )(Z2
j,N − vj,N ))| ≤ C/N ,

N ′∑
j=0

Eµ(h′′j,N (Sj−1,N )(Z2
j,N − vj,N )) ≤ CN ′/N

and will go to 0 provided N � N ′.

For j ≥ N ′, once more, we split the sum by introducing a new parameter k that
we will chose later

Aj = Eµ((h′′j,N (Sj−1,N )− h′′j,N (Sk,N )) (Z2
j,N − vj,N )) +

+Eµ(h′′j,N (Sk,N ) (Z2
j,N − vj,N ))

= A1
j +A2

j .

To control the second term we may use the mixing property. Indeed

A2
j = Eµ

(
h′′j,N (Sk,N )

(∫ j+1

j

2

N lnN
(|∇HK(vs)|2ds− vj,N )

))
=

2

N lnN

∫ j+1

j

Cov(h′′j,N (Sk,N ), |∇HK(vs)|2) ds

=
2

N lnN

∫ j+1

j

Eµ([h′′j,N (Sk,N )− Eµ(h′′j,N (Sk,N ))][|∇HK(vs)|2 − Eµ(|∇HK(vs)|2]).
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Before going on, we need the following

Lemma 4.6. Denote by Ft the filtration generated by vs for s ≤ t (or equivalently
here generated by the Brownian motion B.) and by Gu the σ-field generated by vs for
s ≥ u. If F and G are bounded, non-negative and respectively Ft and Gu measurable
for some u > t, then

Eµ(FG) ≤ α2

(
u− t

2

)
‖ F ‖∞ ‖ G ‖∞

with α(t) = |Pt|∞,2.

Proof. Indeed, using first the Markov property, then conditional expectation w.r.t.
vt and finally stationarity and symmetry we have

Eµ(FG) = Eµ(F Eµ(G|vu)) = Eµ(F g(vu))

= Eµ(F (Pu−tg)(vt)) = Eµ(Eµ(F |vt) (Pu−tg)(vt)) = Eµ(f(vt) (Pu−tg)(vt))

=

∫
f Pu−tg dµ =

∫
Pu−t

2
f Pu−t

2
g dµ

where f and g are bounded respectively by ‖ F ‖∞ and ‖ G ‖∞, so that using
Cauchy-Schwarz inequality and the decay of the semi-group we have the desired
result.

Then by Lemmas 4.6 3.4 and 4.1, we get since s > j

A2
j ≤ C

N lnN
α2((j − k)/2) ‖ |∇HK |2 ‖∞ ||h′′j,N ||∞

≤ C

N lnN

K4

(j − k)2
.

Hence choosing j − k = K2, i.e. k = j −N2ν and N ′ = N2ν , the sum of all these
terms for j ≥ N ′, will go to 0.

The first term can be written

A1
j = Eµ(h

(3)
j,N (Sk,N + τj,N (Sj−1,N − Sk,N )) (Sj−1,N − Sk,N ) (Z2

j,N − vN )))

≤ C
(
Eµ(|Sj−1,N − Sk,N |Z2

j,N ) + vN Eµ(|Sj−1,N − Sk,N |)
)

≤ C√
N lnN

Eµ
(
Z2
j,N

∣∣∣∣HK(vj)−HK(vk+1)−
∫ j

k+1

vK(vs)ds

∣∣∣∣) + C NνN−3/2 ,

since

Eµ(|Sj−1,N − Sk,N |) ≤
(
Eµ
(

1
N lnN

∫ j+1

k+2
|∇HK(vs)|2 ds

)) 1
2 ≤

√
(j − k) vN

= C NνN−1/2 .

Now the first term in the previous sum can be written

A1,1
j =

C√
N lnN

Eµ
(
Z2
j,N

∣∣∣∣HK(vj)−HK(vk+1)−
∫ j

k+1

vK(vs)ds

∣∣∣∣)

=

CEµ
((∫ j+1

j

|∇HK(vs)|2 ds
) ∣∣∣∣HK(vj)−HK(vk+1)−

∫ j

k+1

vK(vu)du

∣∣∣∣)
(N lnN)3/2

.
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Recall that

|vK(v)| ≤ C(Nν 1|v|≤K + |v|1|v|≥K) (42)

and similarly

|HK(v)| ≤ C
(
N3ν 1|v|≤K +N2ν |v|1|v|≥K

)
. (43)

At j and k fixed, we will now decompose A1,1
j in a first part corresponding to the

velocities vk and vj less than K, and a second part for the velocities greater than
K. This yields

A1,1
j =

CEµ
((∫ j+1

j

|∇HK(vs)|2 ds
) [
|HK(vj)|1|vj |≤K + |HK(vk+1)|1|vk+1|≤K

])
(N lnN)3/2

+
C

(N lnN)3/2

∫ j

k+1

Eµ
((∫ j+1

j

|∇HK(vs)|2 ds
)
|vK(vu)|1|vu|≤K

)
du

+

CEµ
((∫ j+1

j

|∇HK(vs)|2 ds
) [
|HK(vj)|1|vj |≥K + |HK(vk+1)|1|vk+1|≥K

])
(N lnN)3/2

+
C

(N lnN)3/2

∫ j

k+1

Eµ
((∫ j+1

j

|∇HK(vs)|2 ds
)
|vK(vu)|1|vu|≥K

)
du.

Then

A1,1
j ≤ C

(N lnN)3/2
Eµ
(∫ j+1

j

|∇HK(vs)|2 ds
)

[N3ν + (j − k)Nν ]

+
C

(N lnN)3/2
K4[Eµ

(
K2|v|1|v|≥K

)
+ (j − k)Eµ

(
|v|1|v|≥K

)
]

≤ C
N3ν

N3/2

(
1

(lnN)1/2
+

1

(lnN)3/2

)
Note that to bound the terms involving velocities greater than K, we just used

the fact that |∇HK |2 ≤ C K4 and that
∫
|v|1|v|≥K dµ ≤ C K−3. For the velocities

less than K, we used that fact that

Eµ

(∫ j+1

j

|∇HK(vs)|2 ds
)
≤ C lnN.

Since we still have to sum up the terms, the constraints on ν are now ν ≤ 3
4 and

1 + 3ν − 3
2 ≤ 0, that is ν ≤ 1

6 . Since we have to assume that ν ≥ 1
6 , the value

K = t1/6 is (up to slowly varying perturbation since a priori, K does not have to
be on the form tν) the only possible one.

Gathering all these intermediate bounds we have obtained A1
j ≤ C

N
√
lnN

.

Actually one can generalize Lemma 4.5, replacing h(x) = eiλx defined on R by
h(x) = ei〈λ,x〉 defined on Rd. The proof above immediately extends to this situation,
replacing the gaussian r.v. by a gaussian random vector with independent entries,
and using that the correlations between the Sit ’s are vanishing. Details are left to
the reader. One can also check that the assumptions in Proposition 8.1 of [4] are
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satisfied in order to deduce a (MCLT) from the previous (CLT). This allows us to
state our main theorem.

Indeed, the statement (1)(2) of Theorem 2.4 are direct consequences of Lemma
4.5. Moreover, the last statement of Theorem 2.4 is easily deduced from the previous
ones. Indeed, we may apply (2) with t′ = t/θ(ε) and a normalization

√
t′ ln t′ =

1

ε

√
t ln(t/θ(ε))/ ln(1/ε) ∼

√
2t

ε
as ε→ 0 .

The initial density of x0 is then given by h0, (2) implies the convergence of the
distribution of the random vector defined by (7) to Cβ ω

−1
β (v) (h0 ∗ ρt)(x) dv dx,

ρt being the density of a centered gaussian random vector with covariance matrix
2κ
3 t Id. In different term, by writing the convergence in law, we obtain the conclusion

of Theorem 2.4
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