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Abstract. We consider an hyperbolic singular perturbation of the incom-
pressible Navier Stokes equations in two space dimensions. The approximating
system under consideration, arises as a diffusive rescaled version of a standard
relaxation approximation for the incompressible Euler equations. The aim of
this work is to give a rigorous justification of its asymptotic limit toward the
Navier Stokes equations using the modulated energy method.

1. Introduction

Let us consider the incompressible Euler equations, namely

(1.1)























∂tu + ∇ · (u ⊗ u) = ∇φ,

∇ · u = 0,

u(0, x) = u0(x),

for (t, x) ∈ [0, T ] × T
2, where T

2 is the unit periodic square R
2/Z

2. This sys-
tem describes a perfect incompressible fluid, the unknowns u and φ corresponding
respectively to the velocity, which is valued in R

2, and to the pressure of the fluid.
To approximate these equations, most in the spirit of [14], we introduce its

relaxed version, which is obtained by a singular perturbation of the nonlinear term
(u ⊗ u), through a supplementary matrix valued variable V : T

2 → R
4. This leads

to the following system

(1.2)











































∂tu + ∇ · (V ) = ∇φ,

∂tV + a∇u = −1

η
(V − u ⊗ u),

∇ · u = 0,

u(0, x) = u0(x), V (0, x) = V0(x).

Let us notice that, as η goes to zero, we formally recover system (1.1).
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Let us consider now a diffusive scaling, namely, for ε > 0, we set

(1.3)















































uε(t, x) :=
1√
ε
u

(

x√
ε
,
t

ε

)

,

V ε(x, t) :=
1

ε
V

(

x√
ε
,
t

ε

)

,

φε(x, t) :=
1

ε
φ

(

x√
ε
,
t

ε

)

.

Therefore system (1.2) becomes, setting from now η = 1,

(1.4)











































∂tu
ε + ∇ · (V ε) = ∇φε,

√
ε∂tV

ε +
a√
ε
∇uε = − 1√

ε
(V ε − uε ⊗ uε),

∇ · uε = 0,

uε(0, x) = uε
0(x), V ε(0, x) = V ε

0 (x).

In this paper we shall prove that, under some suitable assumptions, the solutions
to (1.4) converge, when ε goes to 0, to the (smooth) solutions of the incompressible
Navier Stokes equations

(1.5)























∂tU + ∇ · (U ⊗ U) − a∆U = ∇φ,

∇ · U = 0,

U(0, x) = U0(x).

This result could be promptly recovered, at least at a formal level, if we assume that,
in some (weak) topologies, not only uε → U , but also εV ε → 0 and uε⊗uε → U⊗U .
The aim of this paper is to show how to obtain this result in a different (and simpler)
way by using the modulated energy method [3], leading to a direct error estimate
in the strong L∞([0, T ], L2(T2)) norm, for all finite positive T .

Let us recall that the diffusive scaling ( x√
ε
, t

ε
) has been largely investigated in

the framework of hydrodynamic limits of the Boltzmann equations, see for instance
[8] and references therein. Starting from the works about the diffusive limit of
the Carleman equations by Kurtz [11] and McKean [20], this scaling has also been
systematically used in the analysis of hyperbolic-parabolic relaxation limits for weak
solutions of hyperbolic systems of balance laws with strongly diffusive source terms
by means of compensated compactness techniques by Marcati and collaborators
[18, 17, 19, 7]. For other diffusive kinetic models and approximations, we refer to
[15, 13, 12]. A general class of kinetic approximations for (possibly degenerate)
parabolic equations in multi-D has been considered in [4, 1]. Let us also point out
that the same scaling was used in [16] to analyze the time-asymptotic limit of the
Jin-Xin relaxation model [14], towards the fundamental solution of the diffusive
Burgers equation.

Finally let us remark that our scaling can be considered as a hyperbolic pertur-
bation of the Navier Stokes equations, which is similar to the Cattaneo hyperbolic
heat equation [6], just eliminating the unknown V in equations (1.4)

(1.6)







∂tu
ε + P (∇ · (uε ⊗ uε)) − a∆uε + ε∂ttu

ε = 0,

∇ · uε = 0,
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where P represents the projection on the divergence free vectors. In this regard,
we mention that some quite different hyperbolic perturbations of the Navier Stokes
equations has been investigated in [21], by considering incompressible viscoelastic
fluids of Oldroyd type. We also point out that a similar approximation has been
also recently proposed in [2] for numerical purposes, as a reduced kinetic model.

Concerning the method of the modulated energy, let us recall that it has been
used by Brenier in [3] to prove the convergence in a quasi-neutral limit of the current
involved in the Vlasov-Poisson system toward a dissipative solution of the incom-
pressible Euler equations. The method consists in estimating, through its time
derivative, a suitable modification of the the standard energy functional, which is
obtained by introducing in the energy a modulation by a well-adapted test func-
tion, in practice the (smooth) solution to the limit equation. This method has
connections with the relative entropy method used by Yau [23], and the modulated
hamiltonian method introduced by Grenier [9] to solve boundary layer problems.
Here we can use some special energy functionals, most in the spirit of Tzavaras
estimates for the Jin–Xin relaxation model [22].

The paper is organized as follows. In Section 2 we give some analytical back-
grounds and state our main result. Estimates and proofs are given in Section 3.

2. Analytical backgrounds and statements

First we shall state the existence of smooth local solutions for system (1.4).

Theorem 2.1. Suppose the initial data (uε
0(x), V ε

0 (x)) are smooth functions be-
longing to Hs for s ≥ 2. Then, there exists a positive time T ε, which depends only
on the initial data, and a solution (uε, V ε, φε) ∈ C([0, T ]; (Hs)3) to system (1.4).
Moreover, if T ε < ∞, then

(2.1) lim
t→T ε

−

||(uε, V ε)||H2 → ∞.

The proof follows easily by arguing as for the classical wave equation, by using
energy estimates and the Gagliardo–Nirenberg inequalities, see for instance [10],
and it is omitted.

In the following we shall use the norm

|u|H2(T2) = ||u||L2(T2) + ||curl u||L2(T2) + ||∇(curl u)||L2(T2).

Let us recall that, since ∇·u = 0, this norm is equivalent to the H2 norm. Moreover
we shall denote by C0 a given positive constant such that C0 <

√
a. Finally Ks

is the constant which appears in the Sobolev inequality in two space dimensions,
under the norm | · |H2(T2).

The study of the asymptotic behavior of the sequence uε, as ε goes to zero, leads
to the statement of our main result.

Theorem 2.2. Let T ≥ 0 and U 0 be a smooth divergence free vector field on T
2.

Let also (uε
0, V

ε
0 ) be a sequence of smooth initial data on T

2 for problem (1.4).
Assume moreover that there exists a constant C independent of ε such that

(2.2) ||uε
0||H1(T2) ≤ C

(2.3) ||V ε
0 ||H2(T2) ≤

C√
ε

(2.4) |uε
0|H2(T2) <

C0

Ks

√
ε

(2.5)

∫

T2

|uε
0(x) − U0(x)|2dx ≤ C

√
ε.
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Then, uε is a global solution of the relaxed system (1.4) and converges, as ε → 0,
in L∞([0, T ], L2(T2)) towards the (unique smooth) solution U of the incompressible
Navier Stokes equations (1.5) with U 0 as initial data. In addition

sup
t∈[0,T ]

∫

T2

|uε − U |2dx ≤ CT

√
ε,

where CT depends only on T , U , C and C0.

3. Proof of the theorem

3.1. Preliminaries. First, we shall prove some energy estimates under an a priori
assumption on the L∞ norm of uε. Therefore we shall verify that this assumption
holds actually true.

3.1.1. The energy estimate. Let us give our basic energy estimate.

Proposition 3.1. Assume that there exists T > 0 such that ||uε||L∞ ≤
√

a
ε

for all
t ≤ T . Then, setting wε := curl uε, we have the following estimates

(3.1)
d

dt

∫

(
1

2
|uε + ε∂tu

ε|2 + ε2|∂tu
ε|2 + εa|∇uε|2)dx ≤ 0,

and

(3.2)
d

dt

∫

(
1

2
|wε + ε∂tw

ε|2 + ε2|∂tw
ε|2 + εa|∇wε|2)dx ≤ 0,

for all t ≤ T .

Proof. Let us multiply equation (1.6) by (uε + 2ε∂tu
ε) to obtain, after integration

by parts in space and writing ∂tu∂ttu = ∂t(u∂tu) − (∂tu)2,

(3.3)

d

dt

∫

(
1

2
|uε + ε∂tu

ε|2 + ε2|∂tu
ε|2 + εa|∇uε|2)dx

+ε

∫

|∂tu
ε + ∇ · (uε ⊗ uε)|2dx +

∫

(

a|∇uε|2 − ε|∇ · (uε ⊗ uε)|2
)

dx = 0.

Then, since ||uε||L∞ ≤
√

a
ε
, we obtain (3.1).

For the second estimate, we consider the equation satisfied by wε. Since in two
space dimensions we have w = ∂2u1 − ∂1u2, then

(3.4) ∂tw
ε + uε · ∇wε − a∆wε + ε∂ttw

ε = 0.

If we multiply this equation by (wε + 2ε∂tw
ε), we obtain

(3.5)

d

dt

∫

(
1

2
|wε + ε∂tw

ε|2 + ε2|∂tw
ε|2 + εa|∇wε|2)dx

+ε

∫

|∂tw
ε + uε · ∇wε|2 +

∫

(a|∇wε|2 − ε|uε · ∇wε|2) = 0.

The conclusion follows as previously. �

3.1.2. L∞ bounds. Let us prove a uniform L∞ bound for uε , which implies the
assumption made in in the previous statement.

Proposition 3.2. Under the assumptions of Theorem 2.2, if

|uε
0|H2(T2) <

C0

Ks

√
ε
,
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where C0 is a given positive constant such that C0 <
√

a, then the solution uε

verifies the following estimate

(3.6) ||uε||L∞ ≤ C0√
ε
,

for all positive t and, therefore is global.

Proof. Take a positive constant δ such that δ <
√

a − C0 and set

T δ = sup{0 ≤ t ≤ T ; sup
0≤τ≤t

||uε(τ)||L∞ ≤ C0 + δ√
ε

}.

Since |uε
0|H2(T2) < C0

Ks

√
ε
, we have that ||uε

0||L∞ < C0+δ√
ε

, thanks to the the Sobolev

inequalities. Since uε ∈ C0([0, T ], L∞(T2)), we have that T δ > 0. Let us prove now
that T δ = T . If T δ < T , we have

||uε(T δ)||L∞ =
C0 + δ√

ε
<

√

a

ε
.

Then, there exists µ > 0 such that for all t ≤ T δ + µ, ||uε(t)||L∞ ≤
√

a
ε
. On the

other hand, for all t ≤ T δ +µ, the estimates (3.1) and (3.2) hold true. This implies
that

||uε(T δ)||L2 + ||wε(T δ)||L2 ≤ C,

|uε(T δ)|H2 ≤ C√
εa

.

By standard elliptic regularity, the L2 norm of the curl w of a divergence free vector
field u is equivalent to the H1 semi-norm of u. Therefore, by the Brezis-Gallouet
inequality [5], we have that

||uε(T δ)||L∞ ≤ C(1 + log+(εa)),

which yields a contradiction. �

3.2. Convergence. Let U be a smooth solution of the Navier Stokes equations

with U0 as initial data. We shall prove here that
1

2

∫

|uε − U |2dx ≤ CT

√
ε. To

prove that, we shall define a specific modulated energy which control this quantity.

3.2.1. Definition and properties of the modulated energy. Let us define the energy
in the following way

(3.7) Eε(t) =

∫

(
1

2
|uε + ε∂tu

ε|2 + ε2|∂tu
ε|2 + εa|∇uε|2)dx.

For all smooth divergence free v, we introduce the modulated energy

(3.8) Eε
v(t) =

∫

(
1

2
|uε − v(t, x) + ε∂tu

ε|2 + ε2|∂tu
ε|2 + εa|∇uε|2)dx.

Let us prove now a useful identity.

Proposition 3.3. The modulated energy satisfies the identity
(3.9)

d

dt
Eε

v(t) =

∫

v · ∇ : (uε − v) ⊗ (uε − v) +

∫

(∂tv + v · ∇v − a∆v)(v − uε)

−ε

∫

|∂tu
ε + ∇ · (uε ⊗ uε)|2 − ε

∫

∂tv · ∂tu
ε

−a

∫

|∇(uε − v)|2 + ε

∫

|∇(uε ⊗ uε)|2.



6 Y. BRENIER, R. NATALINI, AND M. PUEL

Proof. We have

d

dt
Eε

v(t) =
d

dt
E(t)−

∫

v · ∂tu
ε −

∫

∂tv ·uε − ε

∫

∂tv · ∂tu
ε − ε

∫

v · ∂ttu
ε +

∫

v∂tv.

Then, using (1.6), (3.3) and the equality
∫

v · ∇ : (uε ⊗ uε) =
∫

v · ∇ : (uε − v) ⊗ (uε − v) +
∫

v · ∇ : (uε ⊗ v)

+
∫

v · ∇ : (v ⊗ uε) −
∫

v · ∇ : (v ⊗ v)

we obtain

(3.10)

d

dt
Eε

v(t) =

∫

v · ∇ : (uε − v) ⊗ (uε − v) +

∫

(∂tv + v · ∇v)(v − uε)

−ε

∫

|∂tu
ε + ∇ · (uε ⊗ uε)|2 − ε

∫

∂tv · ∂tu
ε

+a

∫

∆uε(uε − v) + ε

∫

|∇(uε ⊗ uε)|2.

Therefore, since

a

∫

∆uε(uε − v) = a

∫

∆(uε − v)(uε − v) + a

∫

∆v(uε − v),

we have (3.9). �

3.2.2. Proof of Theorem 2.2. Thanks to the assumptions on the initial data, we
have that

∫

|uε|2 ≤ CEε(t) ≤ CEε(0) ≤ C.

Moreover, we have the inequality
∫

|uε − v|2dx ≤ CEε
v(t).

Now, we assume v = U , where U is a smooth solution to the incompressible Navier-
Stokes equations (1.5), with U 0 as initial data, which has a globally bounded spatial
gradient. From (3.9), we obtain

d
dt

Eε
v(t) ≤ CEε

v(t)−ε

∫

∂tv · ∂tu
ε−a

∫

|∇(uε − v)|2 + ε|uε · ∇uε|2.

We have used, in the right-hand side of (3.9), i) that v is smooth in order to bound
the first term by CEε

v , ii) that v is a solution to the Navier-Stokes equations to
cancel the second term. We see that

−ε

∫

∂tv · ∂tu
ε = −ε

d

dt

∫

∂tv · uε + ε

∫

∂ttv · uε,

which is of order ε. We want to prove now that the term

Aε = −a

∫

|∇(uε − v)|2 + ε

∫

|uε · ∇uε|2

goes to zero, as ε → 0. In this regard, let us write

ε

∫

|uε · ∇uε|2 ≤ ε(1 + θ)

∫

|uε · ∇(uε − v)|2 + ε(1 +
1

θ
)

∫

|uε · ∇v|2.

Then, since ||uε||L∞ ≤
√

a√
ε
, we have the inequality

Aε ≤ θa

∫

|∇(uε − v)|2 + ε(1 +
1

θ
)

∫

|uε · ∇v|2.



ON A RELAXATION APPROXIMATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 7

This yields

Aε ≤ θa||∇uε||2L2(T2) + ε(1 +
1

θ
)c||uε||2L2(T2).

Since, thanks to the estimates (3.1) and (3.2), we have
∫

|uε|2 +

∫

|∇(uε − v)|2 ≤ C.

If we take θ =
√

ε, we obtain that Aε = O(
√

ε), when ε goes to zero. Thus, we
have obtained

d

dt
(Ev(t) + O(ε)) ≤ CEv(t) + O(

√
ε).

The assumptions that we have made on the initial data imply that

Ev(0) = O(
√

ε).

We conclude that

sup
t∈[0,T ]

∫

|uε − v|2dx ≤ CEε
v ≤ CT

√
ε,

where CT depends only on T , v and the initial conditions. �
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